Math, asked by hrithikkushwah446, 6 months ago

4z+3/3+1/3=3z-1/2 jiska answer z=11 aayega ose me brain list me mark karuga​

Answers

Answered by suraj5070
203

 \huge {\boxed {\mathbb {QUESTION}}}

 4z+\frac{3}{3}+\frac{1}{3}=3z-\frac{1}{2}

 \huge {\boxed {\mathbb {ANSWER}}}

 \implies 4z+\frac{3}{3}+\frac{1}{3}=3z-\frac{1}{2}

  \implies 4z+\cancel {\frac{3}{3}} +\frac{1}{3}=3z-\frac{1}{2}

 \implies 4z+1+\frac{1}{3} =3z-\frac{1}{2}

 \implies 4z+\frac{3+1}{3} =3z-\frac{1}{2}

 \implies 4z+\frac{4}{3} =3z-\frac{1}{2}

 \implies 4z-3z=-\frac{4}{3}-\frac{1}{2}

 \implies 4z-3z=\frac{-8-3}{6}

 \implies {\boxed {\boxed {z=-\frac{11}{6}}}}

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

_________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 LCM

 The\: least \:common \:multiple\:, lowest\: common\\ multiple\:, or \:smallest\: common\: multiple\: of\: two\\ integers\: a \:and\: b

 HCF

 The \:highest\: common\: factor\: is\: found\: by\\ finding\: all \:common\: factors\: of\: two\: numbers\: and\\ selecting \:the\: largest\: one.

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions