4z-3/5-2z-1/2=1/5-z
solve this question
Answers
Answer:
Given:-
Solve :
To Find:-
The value of "z".
Note:-
●》Here; we will first add/subtract the terms. After adding/subtracting, we will transpose the term to other side ( only known value ) to calculate the value of "z".
●》Transposing - It is a process in which we change the side of known to other side for finding unknown value and signs are also changed in this process. For example - Negative becomes Positive, Multiple becomes Divisional.
Solution:-
☆ According to note first point~
▪︎
▪︎
☆ L.C.M of denominators 5, 2 ( L.H.S side ) = 10
▪︎
▪︎
▪︎
☆ According to note second point ( Transposing "-z", to other side )~
▪︎
☆ L.C.M of denominators 5, 10 ( R.H.S side ) = 10~
▪︎
▪︎
▪︎
▪︎
▪︎
☆ Reciprocating "÷3"~
▪︎
☆ After multiplying~
▪︎
Checking:-
♤ Let's check for "z" that L.H.S = R.H.S or not~
•
♤ Applying "z" value~
•
•
♤ L.C.M of denominators 30,5,2 ( L.H.S side ) = 30; 5, 30 ( R.H.S side ) = 30~
•
•
•
•
Answer:-
Hence, the value of "z" = .
:)
Given:-
Solve : 4z - \dfrac{3}{5} - 2z - \dfrac{1}{2} = \dfrac{1}{5} - z4z−
5
3
−2z−
2
1
=
5
1
−z
To Find:-
The value of "z".
Note:-
●》Here; we will first add/subtract the terms. After adding/subtracting, we will transpose the term to other side ( only known value ) to calculate the value of "z".
●》Transposing - It is a process in which we change the side of known to other side for finding unknown value and signs are also changed in this process. For example - Negative becomes Positive, Multiple becomes Divisional.
Solution:-
\huge\red{4z - \dfrac{3}{5} - 2z - \dfrac{1}{2} = \dfrac{1}{5} - z}4z−
5
3
−2z−
2
1
=
5
1
−z
\huge\red{ \ \ The \ \ value \ \ of \ \ z = ?} The value of z=?
☆ According to note first point~
▪︎4z - \dfrac{3}{5} - 2z - \dfrac{1}{2} = \dfrac{1}{5} - z4z−
5
3
−2z−
2
1
=
5
1
−z
▪︎4z - 2z - \dfrac{3}{5} - \dfrac{1}{2} = \dfrac{1}{5} - z4z−2z−
5
3
−
2
1
=
5
1
−z
☆ L.C.M of denominators 5, 2 ( L.H.S side ) = 10
▪︎2z - \dfrac{3}{5} × \dfrac{2}{2} - \dfrac{1}{2} × \dfrac{5}{5} = \dfrac{1}{5} - z2z−
5
3
×
2
2
−
2
1
×
5
5
=
5
1
−z
▪︎2z - \dfrac{6}{10} - \dfrac{5}{10} = \dfrac{1}{5} - z2z−
10
6
−
10
5
=
5
1
−z
▪︎2z - \dfrac{11}{10} = \dfrac{1}{5} - z2z−
10
11
=
5
1
−z
☆ According to note second point ( Transposing "-z", - \dfrac{11}{10}−
10
11
to other side )~
▪︎2z + z = \dfrac{1}{5} + \dfrac{11}{10}2z+z=
5
1
+
10
11
☆ L.C.M of denominators 5, 10 ( R.H.S side ) = 10~
▪︎2z + z = \dfrac{1}{5} × \dfrac{2}{2} + \dfrac{11}{10} × \dfrac{1}{1}2z+z=
5
1
×
2
2
+
10
11
×
1
1
▪︎3z = \dfrac{2}{10} + \dfrac{11}{10}3z=
10
2
+
10
11
▪︎3z = \dfrac{13}{10}3z=
10
13
▪︎3 × z = \dfrac{13}{10}3×z=
10
13
▪︎z = \dfrac{13}{10} ÷ 3z=
10
13
÷3
☆ Reciprocating "÷3"~
▪︎z = \dfrac{13}{10} × \dfrac{1}{3}z=
10
13
×
3
1
☆ After multiplying~
▪︎z = \dfrac{13}{30}z=
30
13
\huge\pink{The \ \ value \ \ of \ \ z = \dfrac{13}{30}}The value of z=
30
13
Checking:-
♤ Let's check for "z" that L.H.S = R.H.S or not~
• 4z - \dfrac{3}{5} - 2z - \dfrac{1}{2} = \dfrac{1}{5} - z \implies ?4z−
5
3
−2z−
2
1
=
5
1
−z⟹?
♤ Applying "z" value~
• 4 × \dfrac{13}{30} - \dfrac{3}{5} - 2 × \dfrac{13}{30} - \dfrac{1}{2} = \dfrac{1}{5} - \dfrac{13}{30} \implies ?4×
30
13
−
5
3
−2×
30
13
−
2
1
=
5
1
−
30
13
⟹?
• \dfrac{52}{30} - \dfrac{3}{5} - \dfrac{26}{30} - \dfrac{1}{2} = \dfrac{1}{5} - \dfrac{13}{30} \implies ?
30
52
−
5
3
−
30
26
−
2
1
=
5
1
−
30
13
⟹?
♤ L.C.M of denominators 30,5,2 ( L.H.S side ) = 30; 5, 30 ( R.H.S side ) = 30~
• \dfrac{52}{30} × \dfrac{1}{1} - \dfrac{3}{5} × \dfrac{6}{6} - \dfrac{26}{30} × \dfrac{1}{1} - \dfrac{1}{2} × \dfrac{15}{15} = \dfrac{1}{5} × \dfrac{6}{6} - \dfrac{13}{30} × \dfrac{1}{1} \implies ?
30
52
×
1
1
−
5
3
×
6
6
−
30
26
×
1
1
−
2
1
×
15
15
=
5
1
×
6
6
−
30
13
×
1
1
⟹?
• \underline\dfrac{52}{30} - \underline\dfrac{18}{30} - \underline\dfrac{26}{30} - \underline\dfrac{15}{30} = \dfrac{6}{30} - \dfrac{13}{30} \implies ?
30
52
−
30
18
−
30
26
−
30
15
=
30
6
−
30
13
⟹?
• \dfrac{34}{30} - \dfrac{41}{30} = - \dfrac{7}{30} \implies ?
30
34
−
30
41
=−
30
7
⟹?
• - \dfrac{7}{30} = - \dfrac{7}{30} \implies ✔−
30
7
=−
30
7
⟹✔
\huge\green{Hence, Proved : z = \dfrac{13}{30}}Hence,Proved:z=
30
13
Answer:-
Hence, the value of "z" = \dfrac{13}{30}
30
13
.
:)