Math, asked by MDML6192, 1 year ago

5 1/4 ÷ 2 1/3 - 4 2/3 + 5 1/3 × 3 1/2


5 whole 1 upon 4 divided by 2 whole 1 upon 3 minus 4 whole 2 upon 3 + 5 whole 1 upon 3 multiply by 3 whole 1 upon 2

Answers

Answered by aditi353361
33

21/4 ÷ 7/3 - 14/3 + 16/3 × 7/2

21/4×3/7-14/3+16/3×7/2

9/4-14/3+112/6

-29/12+112/6

=200/12

=50/3 answer

Answered by Jaswindar9199
6

16 \frac{1}{4}  \: or \:  \frac{65}{4}

Given:- 5  \frac{1}{4}   ÷ 2  \frac{1}{3}  - 4 \frac{2}{3}  + 5  \frac{1}{3} × 3 \frac{1}{2}

To Find:- value

Solution:-

5  \frac{1}{4}   ÷ 2  \frac{1}{3}  - 4 \frac{2}{3}  + 5  \frac{1}{3} × 3 \frac{1}{2}

Step 1:- Converting mixed fraction into an improper fraction:

  = \frac{21}{4}  \div  \frac{7}{3}  -  \frac{14}{3}  +  \frac{16}{3}  \times  \frac{7}{2}

Step 2 Following the BODMAS rule, we'll divide first.

As we know, when we divide two fraction then reciprocate the second fraction and use multiplication to get the result.

 =  \frac{21}{4}  \times  \frac{3}{7}  -  \frac{14}{3}  +  \frac{16}{3}  \times  \frac{7}{2}  \\   = \frac{63}{28}  -  \frac{14}{3}  +  \frac{16}{3}  \times  \frac{7}{2}

Step 3: Multiply

 =  \frac{63}{28}  -  \frac{14}{3}  +  \frac{112}{6}  \\

Step 4:- Making the denominator equal by taking LCM = 84

  = \frac{63 \times 3}{28 \times 3}  -  \frac{14 \times 28}{3 \times 28}  +  \frac{112 \times 14 }{6 \times 14}

 =  \frac{189}{84}  -  \frac{392}{84}  +  \frac{1568}{84}  \\   = \frac{189 - 392 + 1568}{84}

  = \frac{1365}{84}  \\  = 16 \frac{21}{84}  \\  = 16 \frac{1}{4}

Hence, value is 16 \frac{1}{4}  \: or \:  \frac{65}{4}

#SPJ2

Similar questions