√5-1/√5+1+/√5+1/√5-1=a+b√5
Answers
Answer:
Step-by-step explanation:
Is your question like
Okay, Let's start to solve !
Plz do rationalisation of and separately .
e.g., ×
=
= (5 + 1 + 2√5)/(5 - 1)
= (6 + 2√5)/4
= (3 + √5)/2
similarly, ×
=
= (5 + 1 - 2√5)/(5 - 1)
= (3 - √5)/2
Now, (3 + √5)/2 + (3 - √5)/2 = a + b√5
(3 + √5 + 3 - √5)/2 = a + b√5
3 = a + b√5
3 + 0.√5 = a + b√5
Compare both sides,
a = 3 and b = 0
Answer:
If a = (√5 + 1) / (√5 - 1) and b = (√5 - 1) / ( √5 + 1) then the value of (a2 + ab + b2) / (a2 - ab + b2) is ?
3/4
4/3
3/5
5/3
Correct Option: B
a = [(√5 + 1) / (√5-1)] x [(√5 + 1) / (√5 + 1)]
= (√5 + 1)2 / (5 - 1)
= (5 + 1 + 2 √5) / 4
= (3 + √5) / 2
b = [(√5 - 1) / (√5 + 1)] x [(√5 - 1 ) / (√5 -1)]
= (√5 - 1 )2 / (5 - 1)
= (5 + 1 - 2√5) / 4
= (3 - √5) / 2
Now a2 + b2 = [(3 + √5)2 + (3 - √5)2] / 4
= [2 x (9 + 5 )] / 4
= 7
ab = 1
∴ (a2 + ab + b2) / (a2 - ab + b2)
= (7 + 1) / (7 - 1)
= 8/6
= 4 / 3 ok follow me ✌️ samile ✌