5(1/x2+1/y2+1/z^2)=4(1/xy+1/yz+1/zx)
Answers
Answered by
2
Algebra,
We have,
1/x²+ 1/y²+ 1/z²= 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²-2(1/xy + 1/yz + 1/xz) = 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=4/5(1/xy + 1/yz + 1/xz) + 2(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=14/5(1/xy + 1/yz + 1/xz)
so the ansewr is,
or, 1/x + 1/y + 1/z = 1/xyz√{14/5(xy + yz + xz)}
I think it's the correct, infact sure it's the answer.
That's it
Hope it helped (●´ϖ`●)
We have,
1/x²+ 1/y²+ 1/z²= 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²-2(1/xy + 1/yz + 1/xz) = 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=4/5(1/xy + 1/yz + 1/xz) + 2(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=14/5(1/xy + 1/yz + 1/xz)
so the ansewr is,
or, 1/x + 1/y + 1/z = 1/xyz√{14/5(xy + yz + xz)}
I think it's the correct, infact sure it's the answer.
That's it
Hope it helped (●´ϖ`●)
Attachments:
Similar questions
5(1/x² + 1/y² + 1/z²) = 4(1/xy + 1/yz + 1/zx)
4/x² + 4/y² + 4/z² + 1/x² + 1/y² + 1/z² - 4/xy - 4/yz - 4/zx = 0
(4/x² + 1/y² - 4/xy) + (4/y² + 1/z² - 4/yz) + (4/z² + 1/x² - 4/zx) = 0
(2/x - 1/y)² + (2/y - 1/z)² + (2/z - 1/x)² = 0
So,,
2/x - 1/y = 0
2/y - 1/z = 0
2/z - 1/x = 0
----------Add these ------------
2(1/x + 1/y + 1/z) - 1/x + 1/y + 1/z = 0
1/x + 1/y + 1/z = 0 ...Answer