Math, asked by ronitrai816, 9 months ago

5 + 10 + 15 +. . . . + 100 How much?

Answers

Answered by Anonymous
0

Answer:1050

pls refer my attachment:

Attachments:
Answered by Anonymous
0

\huge{\underline{\underline{\bf{Solution:}}}}

\rule{200}{2}

\tt given\begin{cases} \sf{A.P : 5, 10, 15 ....... 100} \\ \sf{First \: term (a) = 5} \\ \sf{Common \: Difference (d) = 5} \\ \sf{Last \: term (L) = 100}\end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find the sum of all the terms

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

Firstly, we will find the number of terms.

\Large{\star{\boxed{\rm{A_n = a + (n - 1)d}}}}

\sf{→100 = 5 + (n - 1)5} \\ \\ \sf{→100 = \cancel{5} + 5n \cancel{-5}}\\ \\ \sf{→n = \frac{\cancel{100}}{\cancel{5}}} \\ \\ \sf{→n = 20}

\rule{200}{2}

Now,

We know that,

\Large{\star{\boxed{\sf{S_n = \frac{n}{2} (a + L)}}}}

\sf{→S_n = \frac{\cancel{20}}{\cancel{2}} (5 + 100)} \\ \\ \sf{→S_n = 10(105)} \\ \\ \sf{→S_n = 1050}

Similar questions