Math, asked by yaasharasik, 10 months ago

5,10,15,20...... find at50​

Answers

Answered by Anonymous
2

\Large{\underline{\underline{\bf{Solution :}}}}

\rule{200}{1}

Given :

  • A.P : 5, 10, 15, 20 .......... 50
  • First term (a) = 5
  • Common Difference (d) = 5
  • Last term (\sf{A_n)} = 50

\rule{200}{1}

To Find :

We have to find the sum of all the terms.

\rule{200}{1}

Solution :

We know that,

\Large{\implies{\boxed{\boxed{\sf{A_n = a + (n - 1)d}}}}}

\sf{→ 50 = 5 + (n - 1)5} \\ \\ \sf{→ 50 = 5 + 5n - 5} \\ \\ \sf{→ 5n = 50}\\ \\ \sf{→ n = \frac{\cancel{50}}{\cancel{5}}} \\ \\ \sf{→ n = 10}

\rule{200}{2}

Now,

\Large{\implies{\boxed{\boxed{\sf{S_n = \frac{n}{2} (a + L)}}}}}

\sf{→ S_n = \frac{\cancel{10}}{\cancel{2}}(5 + 50)} \\ \\ \sf{→ S_n = 5(55)} \\ \\ \sf{→ S_n = 275}

Similar questions