Math, asked by amitshuklaas256, 1 month ago

5√1024
 \sqrt[5]{1024}

Answers

Answered by Yuseong
11

Required Solution :

 \longrightarrow \sf{ \sqrt[5]{1024}}

As we know that,

  •  \longrightarrow \sf{ \sqrt[n]{a} = a^{\frac{1}{n} }}

 \longrightarrow \sf{ \sqrt[5]{1024} = 1024^{\frac{1}{5} } }

Now, resolve the 1024 into prime factors, we get that :

 \longrightarrow \sf { 1024 =4 \times 4 \times 4 \times 4 \times 4 }

 \longrightarrow \sf { 1024 =4^5 }

Substitute the value  \longrightarrow \sf { 4^5 } at the place of 1024.

 \longrightarrow \sf{ \sqrt[5]{1024} = 4^{\not {5}(^{\frac{1}{\not5} })} }

 \longrightarrow \underline{ \boxed{\sf{ \sqrt[5]{1024} = 4}}} \; \bigstar

Therefore,   \sf{ \sqrt[5]{1024}} is 4.

More information :

Indices identities

 \boxed{ \begin{array}{cc} { \sf{ \star \:  \:  {(  \sqrt{a} )}^{2} = a } }   \\ \\   \star \:  \:  \sf \sqrt{a}  \sqrt{b}   =   \sqrt{ab} \\  \\  \star \:  \:  \sf \dfrac{ \sqrt{a} }{  \sqrt{b}   }  =  \sqrt{ \dfrac{a}{b} } \\  \\  \star \:  \:  \sf( \sqrt{a}  +  \sqrt{b}  )( \sqrt{a}   -   \sqrt{b}  ) = a - b \\  \\  \star \:  \: \sf( \sqrt{a}   \pm  \sqrt{b}  ) {}^{2}  =  {a}^{2} \pm2 \sqrt{ab}   +  b \\  \\  \star \:  \:  \sf{ (a  +  \sqrt{b})(a -  \sqrt{b} ) =  {a}^{2} - b  } \end{array}}

Laws of exponents :

 \boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

Similar questions