Math, asked by vermabadrinath444, 2 months ago

5)
(12) 81x2-25 =
A. (9x - 5) (9x-5)
B. (9x - 5) (9x + 5)
C. (9x - 5)2
D. (9x + 5)2
(13) (100x2 - 49) = (10x + 7) =
A. 10x - 7
B. 10x + 7 C. 10x + 49 D. 10x - 49
(14) (4a2 - 20a + 25) = (2a -5) =
A. 2a + 5 B. 2a-5 C. 2a + 25 D. 2a - 25
(15) (x2 + 9x + 18) = (x + 6) =
A.x+3 Box + 6 C.x+2 D. x + 9
(16) Adding
to a? + it becomes a perfect square
trinomial.​

Answers

Answered by johnsimondeby
1

Answer:

MULTIPLE CHOICE.  Choose the one alternative that best completes the statement or answers the question.

Write the point-slope form of the line satisfying the conditions.  Then use the point -slope form of the equation to write

the slope-intercept form of the equation in function notation.

1) Slope = -8, passing through (2, 5)

A) f(x) = - 8x - 21 B) f(x) = - 8x + 21

C) f(x) = 8x - 21 D) f(x) = - 1

8

x - 21

8

1)

2) Slope = 2

7

, passing through (0, 2)

A) f(x) = 2

7

x + 2 B) f(x) = 2

7

x - 2 C) f(x) = - 2

7

x - 2 D) f(x) = 7

2

x + 7

2)

3) Passing through (9, 56) and (4, 26)

A) f(x) = -6x + 110 B) f(x) = 6x + 2

C) f(x) = - 1

6

x + 115

2 D) f(x) = 1

6

x + 109

2

3)

4) Passing through (7, -22) and (5, -14)

A) f(x) = - 1

4

x - 81

4 B) f(x) = 1

4

x - 95

4

C) f(x) = 4x - 50 D) f(x) = -4x + 6

4)

5) Passing through (2, -24) and (-1, 3)

A) f(x) = 9x - 42 B) f(x) = -9x - 6

C) f(x) = 1

9

x - 218

9 D) f(x) = - 1

9

x - 214

9

5)

Evaluate the expression for the given values.

6) 9x2 + 7y, for x = 5, y = 10

A) 2095 B) 295 C) 935 D) 2880

6)

7) (x + 3y)2 , for x = 3, y = 3

A) 144 B) 36 C) 24 D) 12

7)

Add the polynomials. Assume all variable exponents represent whole numbers.

8) (6x7 - 4x6 - 8x) + (4x7 - 9x6 - 9x)

A) 10x7 - 13x6 - 17x B) -20x14

C) 10x - 13x7 - 17x6 D) -4x7 - 3x6 - 13x

8)9) (9x4 - 2x3 + 9x2 + 4) + (4x4 + 4x3 - 7x2 - 7)

A) 13x8 + 2x6 + 2x4 - 3 B) 17x18 - 3

C) 8x4 + 8x3 + 2x2 + 2 D) 13x4 + 2x3 + 2x2 - 3

9)

10) (-5x5 + 7x4 + 14) + (8x5 + 18x4 + 20)

A) 3x5 + 23x4 + 6 B) 3x5 + 25x4 + 34 C) 3x5 + 25x4 + 6 D) 62x9

10)

11) (-4x4 + 3x3 - 9x2 - 5) + (8x4 - 6x3 + 3x2 - 2)

A) 12x4 - 9x3 + 12x2 - 7 B) 12x4 - 9x3 + 12x2 + 3

C) 4x4 - 3x3 - 6x2 - 7 D) 4x4 - 9x3 + 12x2 + 3

11)

12) (-3x2y - xy) + (6x2y + 5xy)

A) 9x2y + 6xy B) 9x2y + 4xy C) 3x2y + 4xy D) 3x2y + 6xy

12)

Subtract the polynomials. Assume all variable exponents represent whole numbers.

13) (6x5 - 8x3 + 10) - (2x5 - 19x3 - 6)

A) 4x5 - 6x3 + 4 B) 31x8 C) 4x5 + 11x3 + 16 D) 4x5 + 11x3 + 4

13)

14) (9x6 + 5x5 + 13x) - (6x6 + 20x5 + 20x)

A) 3x6 + 11x5 + 33x B) 3x6 - 15x5 - 7x

C) 3x6 - 15x5 + 33x D) -19x12

14)

15) (6x6 + 4x5 - 7x4 + 2) - (4x6 - 8x5 + 3x4 + 5)

A) 10x6 - 4x5 - 4x4 + 7 B) 2x6 - 4x5 - 4x4 + 7

C) 10x6 - 4x5 - 4x4 - 3 D) 2x6 + 12x5 - 10x4 - 3

15)

Multiply the monomials. Assume any variable exponents represent whole numbers.

16) (8x5y)(-11x6y7)

A) -88x11y7 B) -3x30y7 C) -88x11y8 D) -3x11y8

16)

17) (5x2)(9x5)

A) 45x7 B) -45x7 C) -45x10 D) 45x10

17)

18) (12x4y)(-7x2y5)

A) 5x6y6 B) 5x8y5 C) -84x6y6 D) -84x6y5

18)

19) (5x6y2z)(-9x7yz4)

A) -45x13y3z5 B) -4x13y3z5 C) -45x42y2z4 D) -4x42y2z4

19)

Multiply the monomial and the polynomial. Assume any variable exponents represent whole numbers.

20) -8x6(11x - 4)

A) -56x6 B) -88x7 - 4 C) -88x + 32 D) -88x7 + 32x67xy(10x - 12y)

A) 17x2 - 19y2 B) 70x2y - 84xy2 C) 17x2y - 19xy2 D) 70x2 - 84y2

21)

22) 8ab2(11a2b3 + 6ab)

A) 88a3b5 + 48a2b3 B) 88a2b5 + 48a2b3

C) 88a3b4 + 48a2b3 D) 88a3b5 + 48a2b2

22)

23) 3x2y(-9x2y4 - 11xy3 + 2)

A) -27x4y5 + 33x3y4 - 6x2y B) -27x2y5 - 33x3y4 + 6x2y

C) -27x4y5 - 33x3y4 + 6x2y D) -27x4y5 - 33x3y4 + 6

23)

Find the product. Assume all variable exponents represent whole numbers.

24) (x - 12)(x2 + 4x - 9)

A) x3 + 16x2 + 39x - 108 B) x3 - 8x2 - 57x + 108

C) x3 + 16x2 + 57x + 108 D) x3 - 8x2 - 39x - 108

24)

25) (x + 2)(x2 - 2x + 4)

A) x3 - 8 B) x3 + 4x2 + 4x + 8

C) x3 - 4x2 - 4x + 8 D) x3 + 8

25)

26) (x + y)(x2 + 10xy - y2)

A) x3 + 10x2y - xy2 B) x3 + 10x2y + 10xy2 - y3

C) x3y + 10x2y - xy3 D) x3 + 11x2y + 9xy2 - y3

26)

Use the FOIL method to multiply the binomials. Assume any variable exponents represent whole numbers.

27) (x + 3)(x + 1)

A) x2 + 3x + 4 B) x2 + 4x + 4 C) x2 + 4x + 3 D) x2 + 3x + 3

27)

28) (x + 6y)(x - 11y)

A) x2 - 8xy - 66y2 B) x2 - 5xy - 5y2 C) x - 5xy - 66y D) x2 - 5xy - 66y2

28)

29) (10x - y)(8x - 12y)

A) 80x2 + 128xy + 12y2 B) 80x2 - 128xy - 12y2

C) 80x2 - 128xy + 12y2 D) 18x2 - 128xy + 12y2

29)

30) (9x - 11y)(5x - 2y)

A) 45x2 - 73xy - 73y2 B) 45x2 - 55xy + 22y2

C) 45x2 - 18xy + 22y2 D) 45x2 - 73xy + 22y2

30)

31) (5xy + 11)(3xy + 12)

A) 15x2y2 + 93xy + 23 B) 15x2y2 + 93xy + 132

C) 15x2y2 + 60xy + 132 D) 8x2y2 + 93xy + 132

31)

Similar questions