5)
(12) 81x2-25 =
A. (9x - 5) (9x-5)
B. (9x - 5) (9x + 5)
C. (9x - 5)2
D. (9x + 5)2
(13) (100x2 - 49) = (10x + 7) =
A. 10x - 7
B. 10x + 7 C. 10x + 49 D. 10x - 49
(14) (4a2 - 20a + 25) = (2a -5) =
A. 2a + 5 B. 2a-5 C. 2a + 25 D. 2a - 25
(15) (x2 + 9x + 18) = (x + 6) =
A.x+3 Box + 6 C.x+2 D. x + 9
(16) Adding
to a? + it becomes a perfect square
trinomial.
Answers
Answer:
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Write the point-slope form of the line satisfying the conditions. Then use the point -slope form of the equation to write
the slope-intercept form of the equation in function notation.
1) Slope = -8, passing through (2, 5)
A) f(x) = - 8x - 21 B) f(x) = - 8x + 21
C) f(x) = 8x - 21 D) f(x) = - 1
8
x - 21
8
1)
2) Slope = 2
7
, passing through (0, 2)
A) f(x) = 2
7
x + 2 B) f(x) = 2
7
x - 2 C) f(x) = - 2
7
x - 2 D) f(x) = 7
2
x + 7
2)
3) Passing through (9, 56) and (4, 26)
A) f(x) = -6x + 110 B) f(x) = 6x + 2
C) f(x) = - 1
6
x + 115
2 D) f(x) = 1
6
x + 109
2
3)
4) Passing through (7, -22) and (5, -14)
A) f(x) = - 1
4
x - 81
4 B) f(x) = 1
4
x - 95
4
C) f(x) = 4x - 50 D) f(x) = -4x + 6
4)
5) Passing through (2, -24) and (-1, 3)
A) f(x) = 9x - 42 B) f(x) = -9x - 6
C) f(x) = 1
9
x - 218
9 D) f(x) = - 1
9
x - 214
9
5)
Evaluate the expression for the given values.
6) 9x2 + 7y, for x = 5, y = 10
A) 2095 B) 295 C) 935 D) 2880
6)
7) (x + 3y)2 , for x = 3, y = 3
A) 144 B) 36 C) 24 D) 12
7)
Add the polynomials. Assume all variable exponents represent whole numbers.
8) (6x7 - 4x6 - 8x) + (4x7 - 9x6 - 9x)
A) 10x7 - 13x6 - 17x B) -20x14
C) 10x - 13x7 - 17x6 D) -4x7 - 3x6 - 13x
8)9) (9x4 - 2x3 + 9x2 + 4) + (4x4 + 4x3 - 7x2 - 7)
A) 13x8 + 2x6 + 2x4 - 3 B) 17x18 - 3
C) 8x4 + 8x3 + 2x2 + 2 D) 13x4 + 2x3 + 2x2 - 3
9)
10) (-5x5 + 7x4 + 14) + (8x5 + 18x4 + 20)
A) 3x5 + 23x4 + 6 B) 3x5 + 25x4 + 34 C) 3x5 + 25x4 + 6 D) 62x9
10)
11) (-4x4 + 3x3 - 9x2 - 5) + (8x4 - 6x3 + 3x2 - 2)
A) 12x4 - 9x3 + 12x2 - 7 B) 12x4 - 9x3 + 12x2 + 3
C) 4x4 - 3x3 - 6x2 - 7 D) 4x4 - 9x3 + 12x2 + 3
11)
12) (-3x2y - xy) + (6x2y + 5xy)
A) 9x2y + 6xy B) 9x2y + 4xy C) 3x2y + 4xy D) 3x2y + 6xy
12)
Subtract the polynomials. Assume all variable exponents represent whole numbers.
13) (6x5 - 8x3 + 10) - (2x5 - 19x3 - 6)
A) 4x5 - 6x3 + 4 B) 31x8 C) 4x5 + 11x3 + 16 D) 4x5 + 11x3 + 4
13)
14) (9x6 + 5x5 + 13x) - (6x6 + 20x5 + 20x)
A) 3x6 + 11x5 + 33x B) 3x6 - 15x5 - 7x
C) 3x6 - 15x5 + 33x D) -19x12
14)
15) (6x6 + 4x5 - 7x4 + 2) - (4x6 - 8x5 + 3x4 + 5)
A) 10x6 - 4x5 - 4x4 + 7 B) 2x6 - 4x5 - 4x4 + 7
C) 10x6 - 4x5 - 4x4 - 3 D) 2x6 + 12x5 - 10x4 - 3
15)
Multiply the monomials. Assume any variable exponents represent whole numbers.
16) (8x5y)(-11x6y7)
A) -88x11y7 B) -3x30y7 C) -88x11y8 D) -3x11y8
16)
17) (5x2)(9x5)
A) 45x7 B) -45x7 C) -45x10 D) 45x10
17)
18) (12x4y)(-7x2y5)
A) 5x6y6 B) 5x8y5 C) -84x6y6 D) -84x6y5
18)
19) (5x6y2z)(-9x7yz4)
A) -45x13y3z5 B) -4x13y3z5 C) -45x42y2z4 D) -4x42y2z4
19)
Multiply the monomial and the polynomial. Assume any variable exponents represent whole numbers.
20) -8x6(11x - 4)
A) -56x6 B) -88x7 - 4 C) -88x + 32 D) -88x7 + 32x67xy(10x - 12y)
A) 17x2 - 19y2 B) 70x2y - 84xy2 C) 17x2y - 19xy2 D) 70x2 - 84y2
21)
22) 8ab2(11a2b3 + 6ab)
A) 88a3b5 + 48a2b3 B) 88a2b5 + 48a2b3
C) 88a3b4 + 48a2b3 D) 88a3b5 + 48a2b2
22)
23) 3x2y(-9x2y4 - 11xy3 + 2)
A) -27x4y5 + 33x3y4 - 6x2y B) -27x2y5 - 33x3y4 + 6x2y
C) -27x4y5 - 33x3y4 + 6x2y D) -27x4y5 - 33x3y4 + 6
23)
Find the product. Assume all variable exponents represent whole numbers.
24) (x - 12)(x2 + 4x - 9)
A) x3 + 16x2 + 39x - 108 B) x3 - 8x2 - 57x + 108
C) x3 + 16x2 + 57x + 108 D) x3 - 8x2 - 39x - 108
24)
25) (x + 2)(x2 - 2x + 4)
A) x3 - 8 B) x3 + 4x2 + 4x + 8
C) x3 - 4x2 - 4x + 8 D) x3 + 8
25)
26) (x + y)(x2 + 10xy - y2)
A) x3 + 10x2y - xy2 B) x3 + 10x2y + 10xy2 - y3
C) x3y + 10x2y - xy3 D) x3 + 11x2y + 9xy2 - y3
26)
Use the FOIL method to multiply the binomials. Assume any variable exponents represent whole numbers.
27) (x + 3)(x + 1)
A) x2 + 3x + 4 B) x2 + 4x + 4 C) x2 + 4x + 3 D) x2 + 3x + 3
27)
28) (x + 6y)(x - 11y)
A) x2 - 8xy - 66y2 B) x2 - 5xy - 5y2 C) x - 5xy - 66y D) x2 - 5xy - 66y2
28)
29) (10x - y)(8x - 12y)
A) 80x2 + 128xy + 12y2 B) 80x2 - 128xy - 12y2
C) 80x2 - 128xy + 12y2 D) 18x2 - 128xy + 12y2
29)
30) (9x - 11y)(5x - 2y)
A) 45x2 - 73xy - 73y2 B) 45x2 - 55xy + 22y2
C) 45x2 - 18xy + 22y2 D) 45x2 - 73xy + 22y2
30)
31) (5xy + 11)(3xy + 12)
A) 15x2y2 + 93xy + 23 B) 15x2y2 + 93xy + 132
C) 15x2y2 + 60xy + 132 D) 8x2y2 + 93xy + 132
31)