5√2+3√3+5√3-2√2 answer in steps
Answers
Answered by
2
Step-by-step explanation:
Answer:
\frac{2\sqrt{3}-\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}=\frac{18-4\sqrt{6}+2\sqrt{10}-3\sqrt{15}}{19}
Step-by-step explanation:
Consider,
\frac{2\sqrt{3}-\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}
We multiply and divide by 2√2 - 3√3
we get,
\implies\frac{2\sqrt{3}-\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}\times\frac{2\sqrt{2}-3\sqrt{3}}{2\sqrt{2}-3\sqrt{3}}
\implies\frac{(2\sqrt{3}-\sqrt{5})(2\sqrt{2}-3\sqrt{3})}{(2\sqrt{2}+3\sqrt{3})(2\sqrt{2}-3\sqrt{3})}
\implies\frac{4\sqrt{6}-6\times3-2\sqrt{10}+3\sqrt{15}}{(2\sqrt{2})^2-(3\sqrt{3})^2}
\implies\frac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{8-27}
\implies\frac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}
\implies\frac{18-4\sqrt{6}+2\sqrt{10}-3\sqrt{15}}{19}
4.1
Answered by
0
5√2-2√2+3√3+5√3
=3√2 + 8√3
Similar questions