Math, asked by thecrazygirl15, 1 year ago

5+2√3/7+4√3=a-b√3. Find the value of a and b.

Answers

Answered by presentmoment
283

11 and - 6 is the value of a and b if \bold{\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})}=a-b \sqrt{3}.}

Given:

\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})}=a-b \sqrt{3}

To find:

The value of a and b.=?

Solution:

To find the value of a and b, rationalize the given fraction with 7- 4\sqrt{3}. By multiplying it both in numerator and denominator we get:

\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})} \cdot \frac{(7-4 \sqrt{3})}{(7-4 \sqrt{3})}=\frac{5 \times 7-5 \times 4 \sqrt{3}+2 \sqrt{3} \times 7-2 \sqrt{3} \times 4 \sqrt{3}}{7^{2}-4^{2} \cdot 3}

Solving the denominator in form of (a^2-b^2) to get the value of the denominator

\frac{5 \times 7-5 \times 4 \sqrt{3}+2 \sqrt{3} \times 7-2 \sqrt{3} \times 4 \sqrt{3}}{7^{2}-4^{2} \cdot 3}

Subtracting twenty four from thirty five and -20\sqrt{3} + 14\sqrt{3} separately we get:

\frac{[35-20 \sqrt{3}+14 \sqrt{3}-24]}{[49-48]}=11-6 \sqrt{3}

Therefore, the value of the rationalization is 11-6 \sqrt{3}

Now equating \bold{11-6 \sqrt{3} with a-b \sqrt{3}} ,we get the value of \bold{a = 11} and \bold{b = - 6.}

Answered by mysticd
147

Answer:

 value \: of \: a = 11 \\and \: b = 6

Step-by-step explanation:

LHS = \frac{5+2\sqrt{3}}{7+4\sqrt{3}}

Multiply numerator and denominator by (7-43), we get

= \frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7+4\sqrt{3})(7-4\sqrt{3})}

= \frac{35-20\sqrt{3}+14\sqrt{3}-24}{7^{2}-\left(4\sqrt{3}\right)^{2}}

/* By algebraic identity:

(x+y)(x-y) = -y² */

=\frac{11-6\sqrt{3}}{49-48}

= 11-6\sqrt{3}--(1)

 RHS = a-b\sqrt{3} --(2)\\(given)

Compare (1) and (2), we get

a = 11 , b = 6

Similar questions