Math, asked by SarvednyaMhatre, 1 year ago

5√2+4√3/5√2-4√3 rationalize the denominator

Answers

Answered by Anonymous
5
Given :

 \frac{5 \sqrt{2} + 4 \sqrt{3} }{5 \sqrt{2} - 4 \sqrt{3} } \\

To rationalize the denominator, we have to multiply numerator and denominator by the denominator but by changing the sign.

i.e.

 = \frac{5 \sqrt{2} + 4 \sqrt{3} }{5 \sqrt{2} - 4 \sqrt{3} } \times \frac{5 \sqrt{2} + 4 \sqrt{3} }{5 \sqrt{2} + 4 \sqrt{3} } \\ \\ \\ = \frac{ {(5 \sqrt{2} + 4 \sqrt{3} )}^{2} }{(5 \sqrt{2} - 4 \sqrt{3} )(5 \sqrt{2} + 4 \sqrt{3}) } \\

Using identities –

1. {\boxed{\boxed{(a + b)^2 \ = \ a^2 + b^2 + 2ab}}}

2. {\boxed{\boxed{(a - b)(a + b) \ = \ a^2 - b^2}}}


 = \frac{ {(5 \sqrt{2}) }^{2} + {(4 \sqrt{3}) }^{2} + 2 \times 5 \sqrt{2} \times 4 \sqrt{3} }{ {(5 \sqrt{2} )}^{2} - {(4 \sqrt{3}) }^{2} } \\

On solving further, we get

 = \frac{50 + 48 + 40 \sqrt{6} }{50 - 48} \\ \\ \\ = \frac{98 + 40 \sqrt{6} }{2} \\ \\ \\ = \frac{2 \: (49 + 20 \sqrt{6}) }{2} \\ \\ \\ = 49 + 20 \sqrt{6}
Answered by bhanupratapsingh1605
2

Step-by-step explanation:

djhsncdcn,cjjrd fn dhkgve

Similar questions