Math, asked by helping53, 5 months ago

√5-2/√5+2-√5+2/√5-2=a+b√5
find a and b​

Answers

Answered by brkanawade
1

Answer:

i hope this helps you

Step-by-step explanation:

Attachments:
Answered by Blossomfairy
21

Given :

\bf{ \dfrac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }  -  \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  -  2 } = a +b \sqrt{5}  }

To find :

  • The value of a and b

According to the question,

  \leadsto\bf{ \dfrac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 }  -  \dfrac{ \sqrt{5}  + 2}{ \sqrt{5}  -  2 } = a +b \sqrt{5}  } \\  \\  \leadsto \bf{ \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times  \frac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 } -  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  - 2}   \times  \frac{ \sqrt{5}  + 2}{ \sqrt{5}  + 2 } = a + b \sqrt{5}   } \\  \\  \leadsto \bf{ \frac{ (\sqrt{5}  - 2) {}^{2} }{5 - 4} -  \frac{( \sqrt{5}  + 2) {}^{2} }{5 - 4}  = a + b \sqrt{5}  } \\  \\  \leadsto \bf{ \dfrac{5 - 4  \sqrt{5}  + 4 -  \big(5 + 4 \sqrt{5}  + 4 \big)}{1} = a + b \sqrt{5}  } \\  \\  \leadsto \bf{ \cancel5 - 4 \sqrt{5}  + \cancel4 - \cancel 5 - \cancel 4 \sqrt{5 }  - 4 = a + b \sqrt{5} } \\  \\  \leadsto \bf{ - 8 \sqrt{5} = a + b \sqrt{5}  } \\  \\  { \underline{ \boxed{ \bf \red{a = 0 \: }}}} \:  \: { \underline{ \boxed{ \bf \red{b =  - 8 \sqrt{5} }}}}

Similar questions