Math, asked by dishasajjands3462, 3 months ago

√5 – 2 - √5 + 2 = a+ b √5 (a = 0, b = - 8) √5 + 2 √5 – 2

Answers

Answered by shivajikhot6350
0

Answer:

Hello friends!!

\frac{ \sqrt{5} - 2}{ \sqrt{5} + 2} - \frac{ \sqrt{5} + 2}{ \sqrt{5} - 2 } = a + b \sqrt{5}

5

+2

5

−2

5

−2

5

+2

=a+b

5

First we have to rationalise the denominator.

\frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2} \times \frac{ \sqrt{5} + 2}{ \sqrt{5} + 2} = a + b \sqrt{5}

5

+2

5

−2

×

5

−2

5

−2

5

−2

5

+2

×

5

+2

5

+2

=a+b

5

\frac{ (\sqrt{5} - 2)( \sqrt{5} - 2) }{( \sqrt{5} + 2)( \sqrt{5} - 2) } - \frac{( \sqrt{5} + 2)( \sqrt{5} + 2) }{( \sqrt{5} -2)( \sqrt{5} + 2)} = a + b \sqrt{5}

(

5

+2)(

5

−2)

(

5

−2)(

5

−2)

(

5

−2)(

5

+2)

(

5

+2)(

5

+2)

=a+b

5

\frac{ {( \sqrt{5} - 2)}^{2} }{( \sqrt{5} - 2)( \sqrt{5} + 2) } - \frac{ {( \sqrt{5} + 2)}^{2} }{( \sqrt{5} + 2)( \sqrt{5} + 2) } = a + b \sqrt{5}

(

5

−2)(

5

+2)

(

5

−2)

2

(

5

+2)(

5

+2)

(

5

+2)

2

=a+b

5

Using identity:

( a - b )² = a² + b² - 2ab

( a + b )² = a² + b² + 2ab

( a - b )( a + b ) = a² - b²

\frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} - 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } - \frac{ {( \sqrt{5} )}^{2} + {(2)}^{2} + 2 \times 2 \times \sqrt{5} }{ {( \sqrt{5} )}^{2} - {(2)}^{2} } = a + b \sqrt{5}

(

5

)

2

−(2)

2

(

5

)

2

+(2)

2

−2×2×

5

(

5

)

2

−(2)

2

(

5

)

2

+(2)

2

+2×2×

5

=a+b

5

\frac{5 + 4 - 4 \sqrt{5} }{5 - 4} - \frac{5 + 4 + 4 \sqrt{5} }{5 - 4} = a + b \sqrt{5}

5−4

5+4−4

5

5−4

5+4+4

5

=a+b

5

\frac{9 - 4 \sqrt{5} }{1} - \frac{9 + 4 \sqrt{5} }{1} = a + b \sqrt{5}

1

9−4

5

1

9+4

5

=a+b

5

9 - 4 \sqrt{5} - (9 + 4\sqrt{5} ) = a + b \sqrt{5}9−4

5

−(9+4

5

)=a+b

5

9 - 4 \sqrt{5} - 9 - 4 \sqrt{5} = a + b \sqrt{5}9−4

5

−9−4

5

=a+b

5

- 8 \sqrt{5} = a + b \sqrt{5}−8

5

=a+b

5

Comparing these values,

a = 0

b = - 8

HOPE IT HELPS YOU...

Similar questions