Math, asked by yogesh194, 1 year ago

5 + 2 root 3 upon 7 + 4 root 3

Answers

Answered by DaIncredible
9
Heya friend,
Here is the answer you were looking for:
 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{5 + 2  \sqrt{3}  }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\

Using the identity:

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3}  ) }{ {(7)}^{2}  -  {(4 \sqrt{3}) }^{2} }  \\  \\  =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 24 }{49 - 48}  \\  \\  =  11 - 6 \sqrt{3}

Hope this helps!!!

@Mahak24

Thanks...
☺☺

yogesh194: u r cool
DaIncredible: thanx ^_^
Answered by Anonymous
7
Heya, dear friend

Solution ⬇⬇⬇⬇⬇⤵
______________________________

we \:  \: have \:  \:  \\  \\  \frac{5  + 2\sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\  =  >  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  \\  \\  =  >  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 8( \sqrt{3}  \times  \sqrt{3} ) }{( {7})^{2} - (4 \sqrt{3}  {)}^{2}  }  \\  \\  =  >  \frac{(35 - 24) - 6 \sqrt{3} }{49 - 48}  \\  \\  =  > 11 - 6 \sqrt{3}  \:  \:  \:  \:  \:  \:  \: answer
_________________________________

Hope it's helps you .
☺☺☺☺

DaIncredible: great ma'am
Anonymous: :)
Similar questions