Math, asked by aarohipatel0003, 1 month ago

5+2 root3 upon 7+4 root 3​

Answers

Answered by Anonymous
1

\red{\bf {Answer:}}

\\

\underline{\boxed{\sf\purple{a=11, b=-6}}}

\\

\red{\bf {Solution:}}

\\

 \frac{ (5 + 2√3)}{ (7 + 4√3)} \underline{\boxed{\sf\purple{= a + b√3}}}

\\

Rationalizing the denominator on left-hand-side by multiplying the numerator and denominator with (7 - 4√3),

\\

 \frac{(5 + 2√3) (7 - 4√3)}{(7 + 4√3) (7 - 4√3)} \underline{\boxed{\sf\purple{= a + b√3}}}

\\

Multiply term by term the two expressions on numerator of L.H.S. and for the denominator apply the identity (m+n) (m-n) = m² - n² .

\\

\bold{We \:obtain,}

\\

 \frac{(35 - 20√3 + 14√3 - 8.√3.√3)}{[7² - (4√3)²]} \underline{\boxed{\sf\purple{= a + b√3}}}

\\

\bold{Or, }

\\

 \frac{(35 - 6√3 - 8.3)}{(49 - 48)} \underline{\boxed{\sf\purple{= a + b√3}}}

\\

\bold{Or, }

\\

 \frac{(35 - 6√3 - 24)}{1} \underline{\boxed{\sf\purple{= a + b√3}}}

\\

\bold{Or, }

\\

\underline{\boxed{\sf\purple{11 - 6√3 = a + b√3}}}

\\

Now equate the rational and irrational terms from both sides.

\\

\boxed{\sf{11 = a}}

\\

\bold{Or, }

\\

\boxed{\sf{a = 11}}

\\

\bold{- 6√3 = b√3}

\\

\underline{\boxed{\sf\purple{⇒ b = -6}}}

\\

Thankyou :)

\\

Refer the attachment for better understanding :)

Attachments:
Similar questions