5.25 Submit SINGLE SELECT Last Sync: 05:06 PM Q6 of 60 Mark for review If a,ß are roots of 3x2 – 5x + 7 = 0, then a? +B2 + = Clear Responseइफ अल्फा एंड बीटा और रूट्स ऑफ थ्री एक्स स्क्वायर माइनस फाइव 1 प्लस 7 इक्वल टू जीरो वन एस अल्फा स्क्वायर प्लस बी स्क्वायर इक्वल टू
Answers
Answered by
24
It has given that, α and β are roots of the equation 3x² + 5x - 7 = 0
We have to find the value of αβ
Solution :
1st method : product of roots = constant/coefficient of x² = c/a
= (-7)/3
2nd method :
let's solve equation 3x² + 5x - 7 = 0
x = {-b ± √(b² - 4ac)}/2a
here, b = 5, a = 3 and c = -7
so, x = {-5 ± √(5² + 4 × 3 × 7)}/2(3)
= {-5 ± √(25 + 84)}/6
= {-5 ± √109}/6
so, (-5 + √109)/6 and (-5 - √109)/6 are roots of equation.
so we assume α = (-5 + √109)/6 and β = (-5 - √109)/6
now, αβ = (-5 + √109)/6 × (-5 - √109)/6
= {(-5)² - (√109)²}/36
= {25 - 109}/36
= -84/36
= -7/3
Similar questions