Math, asked by tanushsharma1905, 1 month ago

5+2root3 = a+ broot3
7+4root3

Answers

Answered by mathdude500
5

Appropriate Question :-

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}, \: find \: a \: and \: b

Basic Concept Used :-

Method of Rationalization :-

Rationalization is the process of removing radicals from denominator.

Multiple and Divide the given expression by conjugate of denominator.

\huge\underline{\bf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3} \:

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3}} \times \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }  = a + b \sqrt{3} \:

\rm :\longmapsto\:\dfrac{35 - 20 \sqrt{3}  + 14 \sqrt{3} - 24 }{ {7}^{2}   -   {(4 \sqrt{3})}^{2} }  = a + b \sqrt{3}, \:

\rm :\longmapsto\:\dfrac{11 - 6 \sqrt{3} }{49 - 48} = a + b \sqrt{3}

\rm :\longmapsto\:11 - 6 \sqrt{3} = a + b \sqrt{3}

On comparing, we get

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\boxed{ \bf \: a = 11}} \:  \:  \: and \:  \:  \: \purple{\boxed{ \bf \: b =  - 6}}

Answered by Salmonpanna2022
0

Step-by-step explanation:

 \bf{ \underline{Given-}} \\

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a + b \sqrt{3}  \\

 \bf \underline{To \:  find \:  out-} \\

 \rm{Value \:  of  \:  a \: and \:  b \:  in  \: given \: expression.} \\

 \bf \underline{Solution-} \\

Given expression

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a + b \sqrt{3}  \\

The denominator is 7 + 4√3.

We know that

Rationalising factor of a + b√c = a - b√c.

So, the rationalising factor of 7 +4√3 = 7-4√3.

On rationalising the denominator them

 \longrightarrow \:   \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \\

 \longrightarrow \:  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})  }  \\

Now, applying algebraic identity in denominator because it is in the form of;

(a+b)(a-b) = a² - b²

Where, we have to put in our expression: a = 7 and b = 4√3 , we get

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 {)}^{2} - (4 \sqrt{3} {)}^{2}   } \\

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{49 - 48}  \\

Subtract 49 from 48 in denominator to get 1.

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{1}  \\

\longrightarrow \: (5 + 2 \sqrt{3} )(7 - 4 \sqrt{3} ) \\

Now, multiply both term left side to right side.

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 8 \sqrt{3 \times 3 } \\

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 24 \\

 \longrightarrow \: (35 - 24) - 6 \sqrt{3}  \\

 \longrightarrow \: 11 - 6 \sqrt{3}  \\

  \bf\therefore \: 11 - 6 \sqrt{3}  = a + b \sqrt{3}  \\

On, comparing with R.H.S , we have

a = 11 and b = -6

  \bf \underline{Hence, value \:  of \: a  = 11 \: and \: b  =  - 6.} \\

Used Formulae:

(a+b)(a-b) = a² - b²

Rationalising factor of a + b√c = a - b√c.

Similar questions