Math, asked by shraddharanpisee, 2 months ago

5/(√3+√2) Rationalise the denominator​

Answers

Answered by Anonymous
118

To Rationalize :-

  • \sf \dfrac{5}{\sqrt{3} +\sqrt{2} }

Identity Used :-

  • \sf{(a+b)(a-b)={\underline{\green{\underline{\pmb{a^{2}-b^{2}}}}}}}

Solution :-

  • In order to rationalize the denominator, we have to multiply the number with the denominator's inverse.Multiplying by  
  • \sf\dfrac{\sqrt{3} -\sqrt{2} }{\sqrt{3} -\sqrt{2} }

\sf \red{\:  \:  \:  \:  \:  \: :\implies \dfrac{5}{\sqrt{3} +\sqrt{2} }}\\

\:  \:  \:  \:  \:  \:  \::\implies \sf \dfrac{5}{\sqrt{3} +\sqrt{2} } \times \dfrac{\sqrt{3}-\sqrt{2} }{\sqrt{3}-\sqrt{2}}\\

\:  \:  \:  \:  \:  \:  \::\implies \sf \dfrac{5\times (\sqrt{3} - \sqrt{2})}{(\sqrt{3} +\sqrt{2})\times (\sqrt{3} - \sqrt{2}  )}\\

\:  \:  \:  \:  \:  \:  \::\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{(\sqrt{3} )^{2} - (\sqrt{2} )^{2} }\\

\:  \:  \:  \:  \:  \:  \::\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{(3 ) - (2 ) }\\

\:  \:  \:  \:  \:  \:  \::\implies \sf \dfrac{5\sqrt{3} - 5\sqrt{2} }{1 }\\

\:  \:  \:  \:  \:  \:  \:\red{:\implies \sf = 5\sqrt{3} - 5\sqrt{2}}\\

More Identities :-

  • \sf{(a+b)(a+b)={\green{\underline{\underline{\pmb{a^{2}+2ab+b^{2}}}}}}}

  • \sf{(a-b)(a-b)={\green{\underline{\underline{\pmb{a^{2}-2ab+b^{2}}}}}}}

  • \sf{(a+b)(a-b)={\underline{\green{\underline{\pmb{a^{2}-b^{2}}}}}}}

  • \sf{(x+a)(x+b)={\green{\underline{\underline{\pmb{x^{2}+(a+b)x+ab}}}}}}

  • \sf{(a-b)² ={\green{\underline{\underline{\pmb{a² - 2ab + b²}}}}}}

  • \sf{ (a+b+c)²={\green{\underline{\underline{\pmb{a² + b² + c² + 2ab + 2bc + 2ca}}}}}}\\
Similar questions