Math, asked by aniket293220, 1 year ago

√5/3,3/√7 Compare the given pairs of ratio.

Answers

Answered by mandardon
160

 \frac{ \sqrt{5} }{3}  =    \frac{3}{ \sqrt{7} }   \\  \sqrt{5}  \times  \sqrt{7}  = 3 \times 3 \\  \sqrt{35}  = 9 \\  \sqrt{35}  < 9 \\   \frac{ \sqrt{5} }{3}  <  \frac{3}{ \sqrt{7} }
if it realy help you then mark me as brileantlist....
Answered by yogeshgangwar044
1

Answer:

The result is \begin{aligned}&\frac{\sqrt{2}}{3}<\frac{3}{\sqrt{7}}\end{aligned} by comparing the given pairs of ratio.

Step-by-step explanation:

Given: Pairs of ratio\begin{aligned}&\frac{\sqrt{5}}{3}, \frac{3}{\sqrt{7}} \end{aligned}.

To Compare: The given pairs of ratio.

Solution:

Pairs of ratio are $\frac{\sqrt{5}}{3}, \frac{3}{\sqrt{7}} OR \sqrt{5}: 3,3: \sqrt{7}

LCM of  3, \sqrt{7}, \text { is } 3 \sqrt{7}

$\therefore \frac{\sqrt{5}}{3} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{35}}{3 \sqrt{7}}

   $\frac{\sqrt{35}}{3 \sqrt{7}}<\frac{9}{3 \sqrt{7}}

   $\frac{3}{\sqrt{7}} \times \frac{3}{3}=\frac{9}{3 \sqrt{7}}

   $\frac{\sqrt{35}}{3 \sqrt{7}}, \frac{9}{3 \sqrt{3}}

Now, Compare both the fractions,

    $\frac{\sqrt{2}}{3}<\frac{3}{\sqrt{7}}

Hence, The result is \begin{aligned}&\frac{\sqrt{2}}{3}<\frac{3}{\sqrt{7}}\end{aligned} by comparing the given pairs of ratio.

Similar questions