Math, asked by Jcifucucufkcck, 1 year ago

5+√3/5-√3=a+b√15 find the value of a and b

Answers

Answered by Anonymous
4

Answer:

a = 14, b = 5

Step-by-step explanation:

Given :  \dfrac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

Rationalising the denominator, we get

 \dfrac{5 +  \sqrt{3} }{5 -  \sqrt{3} }  \times  \dfrac{5 +  \sqrt{3} }{5 +  \sqrt{3} }

 \dfrac{(5 +  \sqrt{3} )(5 +  \sqrt{3} )}{(5 -  \sqrt{3})(5 +  \sqrt{3} ) }

{Identity : (a - b)(a + b) = -

Here, a = 5, b = 3}

 \dfrac{ {(5 +  \sqrt{3} )}^{2} }{ {(5)}^{2}  -  {( \sqrt{3} )}^{2} }

{Identity : (a + b)² = + + 2ab

Here, a = 5, b = 3}

 \dfrac{ {(5)}^{2}  +  {( \sqrt{3} )}^{2} + 2(5)( \sqrt{3}  )}{5 - 3}

 \dfrac{25 + 3 + 10 \sqrt{3} }{5 - 3}

 \dfrac{28 + 10 \sqrt{3} }{2}

 \dfrac{2(14 + 5 \sqrt{3}) }{2}

→ 14 + 5√3

On comparing with a + b√3, we get

a = 14, b = 5

Similar questions