Math, asked by sangita40, 9 months ago

√5+√3/√5-√3=a+b√15
 to a or b ka man bateye

Answers

Answered by amankumaraman11
0

We have,

  • To determine value of a & b, if

 \green{ \tt \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  =a  + b \sqrt{15} }

Here,

  • On equating the rationalised LHS with given RHS, we can figure out a & b

Thus,

  • Rationalising the LHS,

 \to \: \tt \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }  \times  \frac{  \sqrt{5} +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \\  \\  \to \: \tt \frac{(\sqrt{5}  +  \sqrt{3}) \times (\sqrt{5}  +  \sqrt{3})}{(\sqrt{5}   -   \sqrt{3})  \times  (\sqrt{5}  +  \sqrt{3})}

◇ If, numbers are in form of  \bf(a + b)(a + b), then, identity used is

\boxed{ \bullet \:   \bf \green{(a + b)(a + b) } =   \pink{{(a + b)}^{2} }}

◇ And, if numbers are in form of  \bf(a + b)(a - b), then, identity used is

\boxed{ \bullet \:   \bf \green{(a + b)(a  -  b) } =   \pink{ {a}^{2} -  {b}^{2}   }}

Therefore,

\to \: \tt \frac{ {( \sqrt{5}  +  \sqrt{3} )}^{2} }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2} }   \\  \\  \small \to \:  \tt   \frac{ {( \sqrt{5} )}^{2} +  {( \sqrt{3} )}^{2}   + 2( \sqrt{5} )( \sqrt{3} )}{5 - 3} \\   \\  \to \:  \tt \frac{5 + 3 + 2 \sqrt{15} }{2}    \\   \\  \to \:  \tt \frac{8 + 2 \sqrt{15} }{2}   \:  \: =  \frac{8}{2}  +  \frac{2 \sqrt{15} }{2}  \\  \\  \to \:  \sf4 +  \sqrt{15}

NOW,

  • Equating obtained (simplified) value of LHS with RHS, we get,

 \tt{}a + b  \sqrt{15}  = 4 +  \sqrt{15}  \\  \\  \therefore \:  \:  \boxed{ \bf{}a =  \red4 }\:  \:  \:  \:  \:  \:  \:  \:   \& \:  \:  \:  \:  \:  \:  \:  \:    \boxed{ \bf{}b =  \red1}

Thus,

  • Value of a is 4.
  • Value of b is 1.
Similar questions