Math, asked by kuanshul700, 1 year ago

(5 √3)/(5-√3)=x-√15y then calculate value of x y

Answers

Answered by amikkr
6

THE ACTUAL QUESTION IS "(5+√3)/(5-√3)=x-√15y then calculate value of x+y".

SOLUTION:

The value of x+y is \frac{14-\sqrt{5}}{11}.

  • It is given that (5+√3)/(5-√3)=x-√15y.
  • We have to calculate the value of x and y.
  • We solve the left hand side of the equation first.

LHS = \frac{5 + \sqrt{3} }{5 - \sqrt{3}}

  • We rationalise the denominator by multiplying it with the conjugate of the denominator.
  • The conjugate of 5-√3 is 5+√3.
  • Multiplying the numerator and denominator with the conjugate, we get

LHS = \frac{5 + \sqrt{3} }{5 - \sqrt{3}} × \frac{5+\sqrt{3} }{5 + \sqrt{3}}

LHS = \frac{(5 + \sqrt{3})(5+\sqrt{3}) }{5^2 - (\sqrt{3})^2}

LHS = \frac{25 + 10\sqrt{3}+3 }{25 - 3}

LHS = \frac{28 + 10\sqrt{3} }{22}

LHS = \frac{5\sqrt{3}}{11} + \frac{14}{11}

  • Now comparing LHS and RHS we obtain,

\frac{5\sqrt{3}}{11} + \frac{14}{11} = x - √15y

Now,

\frac{\sqrt{5}\sqrt{15}}{11} + \frac{14}{11} = x - √15y

THerefore, x = \frac{14}{11} and y = \frac{-\sqrt{5}}{11}

Now calculating x+y,

x + y = \frac{14}{11} + \frac{-\sqrt{5}}{11}

x+y = \frac{14 - \sqrt{5}}{11}.

Similar questions