5+√3/√7-4√3=a+7√b find a and b values
Answers
Answered by
1
Hi ,
√7 + 4√3
= √7 + 2√ ( 4 × 3 )
= √( 4 + 3 ) + 2√( 4 × 3 )
Therefore ,
√7 + 4√3 = √4 + √3
= 2 + √3----( 1 )
LHS = ( 5 + √3 ) / ( √7 - 4√3 )
= ( 5 + √3 ) / ( 2 + √3 )
Rationalize the denominator
= (5+√3 )(2 -√3)/(2 + √3 ) ( 2-√3 )
= [10-5√3+2√3-3]/[( 2 )²- (√3)²]
= ( 7 - 3√3 )/(4 - 3 )
= 7 - 3√3
= RHS
7 - 3√3 = a + b√3
Compare both sides
a = 7 , b = - 3
I hope this helps you.
:)
√7 + 4√3
= √7 + 2√ ( 4 × 3 )
= √( 4 + 3 ) + 2√( 4 × 3 )
Therefore ,
√7 + 4√3 = √4 + √3
= 2 + √3----( 1 )
LHS = ( 5 + √3 ) / ( √7 - 4√3 )
= ( 5 + √3 ) / ( 2 + √3 )
Rationalize the denominator
= (5+√3 )(2 -√3)/(2 + √3 ) ( 2-√3 )
= [10-5√3+2√3-3]/[( 2 )²- (√3)²]
= ( 7 - 3√3 )/(4 - 3 )
= 7 - 3√3
= RHS
7 - 3√3 = a + b√3
Compare both sides
a = 7 , b = - 3
I hope this helps you.
:)
Similar questions