History, asked by yoy601pranav, 9 months ago

5+3root2/5-3root2 = a+b root2.

Find the value of A and B

Answers

Answered by chnageswarr
1

Explanation:

IF YOU LIKE THIS, PLEASE FOLLOW ME.

Attachments:
Answered by MisterIncredible
24

Required to find :-

  • Values of " a " and " b "

Method used :-

  • Rationalising the denominator

Identities used :-

1. ( x + y ) ( x + y ) = ( x + y )²

2. ( x + y ) ( x - y ) = x² - y²

3. ( x + y )² = x² + y² + 2xy

Solution :-

\tt{ \dfrac{ 5 + 3 \sqrt{2} }{ 5 - 3 \sqrt{2} } = a + b \sqrt{2} }

We need to find the values of a and b

So,

Consider the LHS part

\rightarrow{\rm{ \dfrac{ 5 + 3 \sqrt{2} }{ 5 - 3 \sqrt{2}} }}

\boxed{\tt{ Rationalising \;  factor \; of \;  5 - 3 \sqrt{3} = 5 + 3 \sqrt{3}}}

\rightarrow{\rm{ \dfrac{ 5 + 3 \sqrt{2}}{ 5 - 3 \sqrt{2} } \times \dfrac{ 5 + 3 \sqrt{2}}{ 5 + 3 \sqrt{2}}}}

Using the identities

1. ( x + y ) ( x + y ) = ( x + y )²

2. ( x + y ) ( x - y ) = x² - y²

3. ( x + y )² = x² + y² + 2xy

So,

By using 1st and 2nd identities . we get ;

\rightarrow{\rm{ \dfrac{ (5 + 3 \sqrt{2} {)}^{2}}{ {(5)}^{2} - {(3 \sqrt{2})}^{2}}}}

By using the 3rd identity expand the numerator

\rightarrow{\rm{ \dfrac{ {(5)}^{2} + {(3 \sqrt{2} )}^{2} + 2 ( 5 ) ( 3 \sqrt{2}) }{ 25 - 18 }}}

\rightarrow{\rm{ \dfrac{ 25 + 18 + 30\sqrt{2} }{ 7 }}}

\rightarrow{\rm{ \dfrac{ 43 + 30\sqrt{2} }{ 7 }}}

Now split the numerator along with the denominator

\rightarrow{\rm{ \dfrac{43}{7} + \dfrac{30\sqrt{2}}{7} }}

\rightarrow{\rm{ \dfrac{43}{7} + \dfrac{30 \sqrt{2} }{7} }}

Hence,

Compare the LHS and RHS

\implies{\tt{ \dfrac{43}{7} + \dfrac{30 \sqrt{2}}{7} = a + b\sqrt{2} }}

Since,

LHS is in the form of RHS

Equal the values on both sides

Hence ,

a = 43/7

b = 30/7

\large{\boxed{\rm{\therefore{Values \; of \; ' a ' \; and \; ' b ' = \dfrac{43}{7} \; and \;  \dfrac{30}{7}}}}}

Similar questions