5(3x+1)^2+6(3x+1)-8=0
Answers
=> 5(3x+1)²+6(3x+1)-8=0
Now, expanding the terms and opening the brackets
=> 5( 3x+1)²+6*3x+6*1-8=0
Identity: (a+b)²= a²+b²+2ab
=> 5[ (3x)²+1²+2(3x)(1)] +18x +6-8=0
=> 5( 9x²+1+6x) +18x-2=0
=> 45x²+5+30x+18x-2=0
=> 45x²+48x+5-2=0
=> 45x²+48x +3=0
Now, it is in the form of a quadratic equation
so, factorise it
By using quadratic formula
a= 45,b= 48 & c= 3
x= -b±√b²-4ac /2a
x= -48±√ 48²-4(45)(3)/2(45)
x= -48±√ 2304-540/90
x= -48±√ 1764/90
Here, the discriminant b²-4ac >0 so ,there will be two real roots
x= -48±42/90
x= -6/90 or x = -90/90
x= -1/15 or x = -1
=> 5(3x+1)²+6(3x+1)-8=0
Now, expanding the terms and opening the brackets
=> 5( 3x+1)²+6*3x+6*1-8=0
Identity: (a+b)²= a²+b²+2ab
=> 5[ (3x)²+1²+2(3x)(1)] +18x +6-8=0
=> 5( 9x²+1+6x) +18x-2=0
=> 45x²+5+30x+18x-2=0
=> 45x²+48x+5-2=0
=> 45x²+48x +3=0
Now, it is in the form of a quadratic equation
so, factorise it
By using quadratic formula
a= 45,b= 48 & c= 3
x= -b±√b²-4ac /2a
x= -48±√ 48²-4(45)(3)/2(45)
x= -48±√ 2304-540/90
x= -48±√ 1764/90
Here, the discriminant b²-4ac >0 so ,there will be two real roots
x= -48±42/90
x= -6/90 or x = -90/90
x= -1/15 or x = -1