Math, asked by omkartakawane2021, 3 months ago

(5) 4m + 6n=54; 3m + 2n=28​

Answers

Answered by Anonymous
6

Given:-

  • 4m + 6n = 54;3m + 2n = 28

To find:-

  • Value of m and n.

Solution:-

★ Mulitply second equation by 3 and subract first equation from it,

→ 3(3m + 2n) - (4m + 6n) = 3(28) - 54

→ 9m + 6n - 4m - 6n = 30

→ 5m = 30

m = 6

★ Substitute in first equation,

→ 4(6) + 6n = 54

→ 6n = 54 - 24

→ 6n = 30

n = 5

Hence,

  • m = 6
  • n = 5
Answered by BadCaption01
7

\huge\bold{Question :- }

Solve the following simultaneous linear equations :

4m + 6n = 54

3m + 2n = 28

\huge\bold{Answer :- }

\sf\underline\red{Given:}

linear equations :-

4m + 6n = 54

3m + 2n = 28

\sf\underline\green{Required~ to~ find :-}

  • Values of m and n

\sf\underline\orange{Method~use :-}

  • Elimination method

Solution :-

Given linear equations :-

4m + 6n = 54

3m + 2n = 28

These are linear equations in 2 variables .

The variables are m and n .

\sf\underline\pink{so,}

  • In order to solve a linear equations in 2 variables

  • We should use some methods in order to solve these simultaneous equations .

  • The method here used is called as \sf\underline\blue{elimination~method }

\sf\underline\pink{so,}

Consider,

\tt{4m + 6n = 54 }{\longrightarrow{equation - 1 }}

\tt{3m + 2n = 28 }{\longrightarrow{ equation - 2 }}

\bf\underline{Now,}

  • Multiply equation 1 with 3

\sf\underline\pink{so,}

3 ( 4m + 6n ) = 3 ( 54 )

\implies{\rm{ 12m + 18n = 162 }}{\longrightarrow{equation - 3 }}

Similarly

  • Multiply equation 2 with 4

\sf\underline\pink{so,}

4 ( 3m + 2n ) = 4 ( 28 )

\implies{\rm{ 12m + 8n = 112 }}{\longrightarrow{equation - 4}}

\bf\underline{Now,}

  • Subtract equation 3 and equation 4

\sf\underline\pink{so,}

12m + 18n = 162

12m + 8n = 112

{(-)\;\;\;\;    (-)\;\;\;\;       (-)}

\rule{200}{2}

0 + 10n = 50

\sf\underline\pink{so,}

\tt{ n = \dfrac{50}{10}}

\red{\underline{\tt{ n = 5 }}}

Now substitute this value of n in equation 1

\sf\underline\pink{so,}

4m + 6n = 54

4m + 6(5) = 54

4m + 30 = 54

4m = 54 - 30

4m = 24

\tt{ m = \dfrac{24}{4}}

\red{\underline{\tt{ m = 6 }}}

\huge\bold{Therefore :- }

  • Value of m = \sf\underline\pink{6}

  • value of n = \sf\underline\pink{5}

Similar questions