Math, asked by ammukitty, 1 year ago

5+√5/5-√5.....ans this guys.....​

Attachments:

Answers

Answered by Anonymous
45

Answer:

 \frac{5 +  \sqrt{5} }{5 -  \sqrt{5} }  \\  \\  =  \geqslant  \frac{5 +  \sqrt{5} }{5 -  \sqrt{5} }  \times  \frac{5 +  \sqrt{5} }{5 +  \sqrt{5} }  \\  \\  =  \geqslant  \frac{(5 +  \sqrt{5} ) {}^{2} }{ {5}^{2}  -  \sqrt{5}  {}^{2} }  \\  \\  =  \geqslant  \frac{5 {}^{2} +  { \sqrt{5} }^{2}   + 2 \times 5 \times  \sqrt{5} }{25 - 5}  \\  \\  =  \geqslant  \frac{25 + 5 + 10 \sqrt{5} }{20}  \\  \\  =  \geqslant  \frac{30 + 10 \sqrt{5} }{20}  \\  \\  =  \geqslant  \frac{10(3 +  \sqrt{5}) }{20}  \\  \\  =  \geqslant  \frac{3 +  \sqrt{5} }{2}

Answered by khushi12saini
7

Answer:

5+√5/5-√5

= (5+√5)^2/(5)^2-(√5)^2

=25+5+10√5/25-5

=30+10√5/20

=10(3+√5)/20

=3+√5/2

Similar questions