Math, asked by prachi7255, 1 year ago

(5) 5m² + 2m + 1 = 0​

Answers

Answered by arvishaali2004
3

Answer:

Step-by-step explanation:

The quadratic eqn will not have any real roots, only it posses imaginary roots.

By Quadratic formula,

In this eqn, a=5, b=2, and c=1....

So, b^2-4ac= 2^2-4*5*1

=> 4-20= -16<0

So, it is impossible to have real roots, as b^2-4ac<0........

Answered by abdul9838
0

 &lt;b&gt; &lt;body \: bgcolor =  "skyblue "&gt;

 \bf \red{hey \: user \: here \: is \: ans} \\  \\  \bf \blue{ \huge \: solution} \\  \\  \bf \green{given \: that} \\  \\  \bf \orange{5 {m}^{2} + 2m + 1 = 0 } \\  \\ \bf \pink{ here \: is \: ans} \\  \\ \bf \purple{method \: = completing \: square} \\  \\ \bf \orange{5 {m}^{2} + 2m + 1 = 0 } \\  \\ \bf \purple{ \underline{multiplying \: by \: 5 \: into \: both \: sides}} \\  \\ \bf \orange{25 {m}^{2}  + 10m + 5 = 0 \times 5} \\  \\ \bf \orange{ ({5m)}^{2} + 2 \times 5m \times 1 +  {1}^{2}  -  {1}^{2} + 5 = 0  } \\  \\ \bf \orange{( {5m + 1)}^{2} - 1 + 5 = 0 } \\  \\ \bf \orange{( {5m + 1)}^{2} + 4 = 0 } \\  \\ \bf \orange{(5m + 1)^{2}  =  \pm \: 4} \\  \\ \bf \orange{5m + 1 =  \pm \:  \sqrt{4} } \\  \\ \bf \orange{5m + 1 =  \pm \: 2} \\  \\ \bf \orange{5m = 2 - 1} \\  \\ \bf \orange{m =  \frac{1}{5} } \\  \\  \bf \orange{and} \\  \\ \bf \orange{5m = - 2 - 1 } \\  \\ \bf \orange{m =  -  \frac{3}{5}  \:  \: ans}

  &lt;marquee \: behavior = "alternate"&gt; &lt;marquee \: bgcolor = "pink"&gt;

 \bf \pink{ \huge \: thanks} \\  \bf \purple{abdul \: is \: here} \\  \bf \blue { \huge \: follow \: me}

Similar questions