(5√5x^3-81√3y^3)÷(√5x-3√3y)=(Ax^2+By^2+Cxy),then the value of (6A+B-√15 c) is. ?? answer(12)
Answers
Answer:
Required numeric value of 6A + B - √15 C is 12.
Step-by-step explanation:
Given,
( 5√5 x^3 - 81√3 y^3 ) ÷ ( √5 x - 3√3 y ) = Ax^2 + By^2 + Cxy
Simplifying Left Hand Side
= > ( 5√5 x^3 - 81√3 y^3 ) ÷ ( √5 x - 3√3 y )
= > [ ( √5 x )^3 - ( 3√3 y )^3 ] ÷ [ √5 x - 3√3 y ]
From the properties of expansion :
- a^3 - b^3 = ( a - b )( a^2 + ab + b^2 )
= > [ ( √5 x - 3√3 y ){ ( √5 x )^2 + ( √5 x × 3√3 y ) + ( 3√3 y )^2 ] ÷ ( √5 x - 3√3 y )
= > ( √5 x )^2 + ( √5 x × 3√3 y ) + ( 3√3 y )^2
= > 5x^2 + 3√15 xy + 27y^2
On comparing left hand side with the right hand side :
= > 5 = A, since both have same coefficient.
= > 3√15 = C, since both have same coefficient
= > 27 = B, since both have same coefficient.
Thus,
= > 6A + B - √15 C
= > 6( 5 ) + 27 - √15 ( 3√15 )
= > 30 + 27 - 3( √15 × √15 )
= > 57 - 3( 15 )
= > 57 - 45
= > 12
Hence the required numeric value of 6A + B - √15 C is 12.
Answer:
abhi is maths aryabhatt really awsm answer