Math, asked by musharaf2, 8 months ago

5.
6. Find the differential
(i) y = a e ^3x + be^x​

Answers

Answered by keyboardavro
0

Answer:

internet you can get the solutions

Answered by aryan073
1

Answer:

correct answer :

.................................... ... ...

Step-by-step explanation:

\huge\underline\mathcal\red{Answer}

y = a {e}^{3x}  + b {e}^{x}

by \: getting \: both \: \:  log_{e} \:  \:  sides

 log_{e}y =  log_{e}a {e}^{3x}  +  log_{e}b {e}^{x}

 log_{e}y = 3x log_{e}ae + x log_{e}be

By differentiate both sides dy/dx

 \frac{1}{y} \frac{dy}{dx}  = 3x \frac{dy}{dx} logae + logea \frac{dy}{dx}3x + x \:  \frac{dy}{dx}logbe + logbe \frac{dy}{dx}x

 \frac{1}{y} \times  \frac{dy}{dx}  = 3x \times a + x \times b ............... { log_{e} }^{e}  = 1

 \frac{dy}{dx}  = y(3xa + xb)

 \frac{dy}{dx}  = xy(3a + b)

put \: the \: y \: value \: in \: this \: equation \: because \: it \: is \: implicts \: function

Required answer ::

 \frac{dy}{dx}  =  {ae}^{x} +  b {e}^{x} (3xa + bx)

\bold{\purple{\fbox{\red{Please thank it}}}}

.

Similar questions