Math, asked by kakumanusreya5, 9 months ago

5.72 - 7x - 6 = 0 find the roots of the following quadratic equation if they exist​

Answers

Answered by rvaishnavislm
1

Answer:

Answer:

The roots are x=\frac{3}{5},-2x=

5

3

,−2

Step-by-step explanation:

Given : Equation 5x^2+7x-6=05x

2

+7x−6=0

To find : The roots of a quadratic equation by completing square method ?

Solution :

Equation 5x^2+7x-6=05x

2

+7x−6=0

Divide both side by 5,

x^2+\frac{7}{5}x-\frac{6}{5}=0x

2

+

5

7

x−

5

6

=0

Applying completing the square,

x^2+\frac{7}{5}x-\frac{6}{5}+(\frac{7}{10})^2-(\frac{7}{10})^2=0x

2

+

5

7

x−

5

6

+(

10

7

)

2

−(

10

7

)

2

=0

(x+\frac{7}{10})^2-\frac{6}{5}-\frac{49}{100}=0(x+

10

7

)

2

5

6

100

49

=0

(x+\frac{7}{10})^2-\frac{169}{100}=0(x+

10

7

)

2

100

169

=0

(x+\frac{7}{10})^2=\frac{169}{100}(x+

10

7

)

2

=

100

169

Taking root both side,

x+\frac{7}{10}=\pm\frac{13}{10}x+

10

7

10

13

Take positive,

x=\frac{13}{10}-\frac{7}{10}x=

10

13

10

7

x=\frac{6}{10}x=

10

6

x=\frac{3}{5}x=

5

3

Take negative,

x=-\frac{13}{10}-\frac{7}{10}x=−

10

13

10

7

x=\frac{-20}{10}x=

10

−20

x=-2x=−2

Therefore, the roots are x=\frac{3}{5},-2x=

5

3

,

Similar questions