Math, asked by pvshashank102, 2 months ago

5^a = 6^b = 30^c, then c=?​

Answers

Answered by Anonymous
6

Answer:

C=A+B

Step-by-step explanation:

 \tt \: Let \:  {5}^{a} =  {6}^{b}  =  {30}^{c} =  K \\  --------------------\\  \longrightarrow \tt \:  {5}^{a}   = K \\    \longrightarrow \: \tt {K}^{ \frac{1}{a} }  = 5 \\ -------------------- \\  \longrightarrow \tt \:  {6}^{b}  = K \\  \longrightarrow \tt \:  {K}^{ \frac{1}{b} }  = 6 \\ -------------------- \\  \longrightarrow \: \tt  {30}^{c}  = K \\  \longrightarrow \tt \:  {K}^{ \frac{1}{c} }  = 30 \\ -------------------- \\  \tt \: We \: know \: that \: 5 \times 6 = 30 \\ \tt So, \\ -------------------- \\  \longrightarrow \tt \: {K}^{ \frac{1}{a} } \times {K}^{ \frac{1}{b} }  = {K}^{ \frac{1}{c} }  \\ -------------------- \\ \tt So, \: if \: bases \: are \: equal \:  \\  \tt \: exponents \: might \: be \: equal \\ --------------------  \\ \longrightarrow \tt \: \frac{1}{a}  +  \frac{1}{b}  =  \frac{1}{c}  \\  \longrightarrow \tt \: \huge{ \underline { \red{ \boxed{ \tt \blue{ c = a + b}}}}}

Similar questions