Physics, asked by akangshad2007, 18 days ago

5) A bus starts from rest and moving with uniform acceleration attains a velocity of 50 km/h in 3 minutes. Find the acceleration and the distance travelled.​

Answers

Answered by SparklingBoy
261

\large \bf \clubs \:  Given :-

A bus starts from rest and moving with uniform acceleration attains a velocity of 50 km/h in 3 minutes.

  • Initial Velocity = u = 0 m/s

  • Final Velocity = v = 50 km/h

  • Time = t = 3 mins

----------------------

\large \bf \clubs \:  To  \: Find :-

  • Acceleration of the Bus

  • Distance Traveled By Bus

----------------------

\large \bf \clubs \:  Important \:  Conversions  :-

Converting Final Velocity in m/s :

We Have,

 \text{Final Velocity = v = 50 km/h} \\  \\  = \bigg( 50 \times  \dfrac{5}{18}  \bigg)  \text{m/s} \\  \\  = \bigg( \dfrac{250}{18}  \bigg)  \text{m/s}

:\longmapsto \text{v =  13.89 m/s} \\

Converting Time in second :

We Have,

 \text{Time = t = 3 mins } \\  \\  = (3 \times 60) \text{ second}

:\longmapsto \text{t = 180 s}

----------------------

\large \bf \clubs \:   Solution :-

Calculating Acceleration :

 \orange{ \bf Applying : v = u + at}

:\longmapsto 13.89 = 0 +  \text{a }\times 180

:\longmapsto \text{13.89 = 180a}

:\longmapsto \text a =  \dfrac{13.89}{180}

\purple{ \large :\longmapsto  \underline {\boxed{{\bf a = 0.077 \: m/ {s}^{2} } }}}

Calculating Distance Traveled :

Let Distance Traveled = s meter

\orange{ \bf Applying : v^2-u^2 = 2as}

:\longmapsto 13.89^2-0^2=2(0.077)(\text s)

:\longmapsto 192.93-0=0.154 \text s

 \text s = \dfrac{192.93}{0.154}

 \large:\longmapsto \text{ s = 1252.79m}

\purple{  \large :\longmapsto  \underline {\boxed{{\bf s = 1.25 \: km(approx)} }}}

Hence ,

 \pink{\begin{cases}\bf Acceleration = 0.077 \: m/s {}^{2} \\  \\\bf Distance  \: Traveled  = 1.25 \:km\end{cases}}

----------------------

----------------------

\large \bf \clubs \: Additional\: Info :-

✏ Three Equations of Motion :

 \large \qquad \boxed{\boxed{\begin{array}{cc} \maltese \: \: \bf v = u + at \\ \\ \maltese \: \: \bf s = ut + \dfrac{1}{2}a {t}^{2} \\ \\ \maltese \: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}

----------------------

Answered by MяMαgıcıαη
89

Answer :

\:

  • Acceleration of a bus is 0.077 m/.

  • Distance travelled by a bus is 1247.4 m.

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

Explanation :

\:

Given :

\:

A bus starts from rest and moving with

uniform acceleration attains a velocity of 50 km/h in 3 minutes.

\:

To Find :

\:

  • Acceleration of a bus and distance travelled by a bus?

\:

Solution :

\:

  • Here, we have initial velocity of a bus (u) = 0 m/s, final velocity of a bus (v) = 50 km/h = (50 × 1/18) m/s = 13.88 m/s and time taken by a bus (t) = 3 minutes = (3 × 60) seconds = 180 seconds. We have to find out acceleration of a bus (a) and distance travelled by a bus (s)? So, here we will use first and third equation of motion to find acceleration and distance travelled. So, let's solve it!

\:

Equations Used :

\:

  • \underline{\boxed{\bf{\pink{\pmb{v = u + at}}}}}

  • \underline{\boxed{\bf{\blue{\pmb{s = ut + \dfrac{1}{2}at^2}}}}}

\:

Where,

\:

  • v denotes final velocity.

  • u denotes initial velocity.

  • a denotes acceleration.

  • t denotes time taken.

  • s denotes distance travelled.

\:

\footnotesize\underline{\bigstar{\bm{\pmb{\:Putting\:all\:values\:in\:1st\:equation\:of\:motion\::}}}}

\\ :\implies \:\sf 13.88 = 0 + a\big(180\big)

\\ :\implies \:\sf 13.88 = 180a

\\ :\implies \:\sf a = {\cancel{\dfrac{13.88}{180}}}

\\ :\implies \:\underline{\boxed{\frak{\pmb{\red{a = 0.077}}}}}\:\green{\bigstar}

\:

  • Therefore, acceleration of a bus (a) is 0.077 m/.

\:

Now,

\:

\footnotesize\underline{\bigstar{\bm{\pmb{\:Putting\:all\:values\:in\:2nd\:equation\:of\:motion\::}}}}

\\ :\implies \:\sf s = 0\big(180\big) + \dfrac{1}{2}\:\times\:\big(0.077\big)\big(180\big)^2

\\ :\implies \:\sf s = 0 + \dfrac{1}{2}\:\times\:0.077\:\times\:32400

\\ :\implies \:\sf s = \dfrac{1}{\cancel{2}}\:\times\:0.077\:\times\:\cancel{32400}

\\ :\implies \:\sf s = 0.077 \:\times\:16200

\\ :\implies \:\underline{\boxed{\frak{\pmb{\green{s = 1247.4}}}}}\:\red{\bigstar}

\:

  • Therefore, distance travelled by a bus (s) is 1247.4 m.

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions