Math, asked by Abhirfx, 3 months ago

5. (a) Integrate
∫ sin(a+b logx)/x dx​

Answers

Answered by mathdude500
4

Given Question :-

\rm :  \implies \:  \int \: \dfrac{sin \: (a \:  +  \: b  \: logx) }{x}  \: dx

Solution

Method used

  • Method of substitution

Formula used

1. \:  \boxed{ \pink{ \rm \:\dfrac{d}{dx}  log(x)   = \dfrac{1}{x} }}

2.  \: \boxed{ \pink{ \rm \: \int \: sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c }}

Now, Consider

\rm :  \implies \: Let \: I \:  =  \:  \int \: \dfrac{sin \: (a \:  +  \: b  \: logx) }{x}  \: dx

\rm :  \implies \: Put \: a \:  +  \: b \: logx \:  =  \: y

On differentiating both sides w. r. t. x, we get

\rm :  \implies \: \dfrac{b}{x}  = \dfrac{dy}{dx}

\rm :  \implies \: \dfrac{1}{x} dx \:  =  \: \dfrac{dy}{b}

Hence, given integral can be rewritten as

\rm :  \implies \: I \:  =  \int \: sin \: y \: \dfrac{dy}{b}

\rm :  \implies \:  \dfrac{1}{b}  \int \: siny \: dy

\rm :  \implies \:  - \dfrac{1}{b}  \: cos \: y \:  +  \: c

\rm :  \implies \:  - \dfrac{1}{b}  \: cos \: (a\:   +  \: b \: logx) \: +  \: c

Similar questions