Math, asked by bhardwajsweta1995, 5 months ago

5. A metallic right circular cone 20 cm high and whose vertical angle is 60° is cut into two
parts at the middle of its height by a plane parallel to its base. If the frustum so obtained
1
be drawn into a wire of diameter
cm, find the length of the wire.
16​

Answers

Answered by eshapriya2006
0

Answer:

HOPE IT HELPS U !!!!

Step-by-step explanation:

In △AEG

tan30=  

AG

EG

​  

 

3

​  

 

1

​  

=  

10

EG

​  

 

EG=  

3

​  

 

10

​  

=  

3

10  

3

​  

 

​  

cm

In △ABD

tan30=  

AD

BD

​  

 

3

​  

 

1

​  

=  

20

BD

​  

 

EG=  

3

​  

 

20

​  

=  

3

20  

3

​  

 

​  

cm

Radius (r  

1

​  

) of upper end of frustum=  

3cm

10  

3

​  

 

​  

 

Radius (r  

2

​  

) of lower end of container=  

3cm

20  

3

​  

 

​  

 

Height (h) of container=10cm

Volume of frustum=  

3

1

​  

πh(r  

1

2

​  

+r  

2

2

​  

+r  

1

​  

r  

2

​  

)

                             =  

3

1

​  

×  

7

22

​  

×10  

​  

(  

3

10  

3

​  

 

​  

)  

2

+(  

3

20  

3

​  

 

​  

)  

2

+  

3

10  

3

​  

 

​  

×  

3

20  

3

​  

 

​  

 

​  

 

                             =  

21

220

​  

[  

3

100

​  

+  

3

400

​  

+  

3

200

​  

]

                             =  

21

220

​  

[  

3

700

​  

]

                             =  

3

220

​  

[  

3

100

​  

]

                             =  

9

22000

​  

cm  

3

 

Radius (r) of wire=  

16

1

​  

×  

2

1

​  

=  

32

1

​  

cm

Let the length of wire=l

Volume of wire= Area of cross-section\times Length

                       =πr  

2

l

                       =π(  

32

1

​  

)  

2

l  

Now,

Volume of frustum=Volume of wire

9

22000

​  

=π(  

32

1

​  

)  

2

l  

⇒  

9

22000

​  

=  

7

22

​  

(  

32

1

​  

)  

2

l  

⇒  

9

22000

​  

×  

22

7

​  

×(32)  

2

=l  

⇒l=  9

7000 ×1024

⇒l=796444.44cm

Similar questions