Math, asked by spsubhrajitjena1234, 4 days ago

5. A right circular cylinder has a height of 1 m and a radius of 35 cm. Find its volume, area of curved surface and total surface.​

Answers

Answered by Syamkumarr
0

Answer:

Volume of cylinder = 77cm^{3} ,

curved surface area = 2.2m^{2},

total surface area= 2.97cm^{2}

Step-by-step explanation:

height of A right circular cylinder h = 1 m  

  a right circular cylinder which means the base of cylinder is in circular shape and parallel to top circle of cylinder

                    radius of circle r= 35 cm  = 0. 35 m

 volume of circular cylinder v = 2\pi r^{2} h

                                               = 2  [\frac{22}{7}] (0.35)^{2}× 100

                                               =  \frac{539}{7} = 77 m^{3}  

curved surface area = 2 \pirh

                                   = 2 × \frac{22}{7}×0.35 ×1

                                    =  \frac{15.4}{7} = 2.2m^{2}

total surface area = 2\pi r(h+r)

                              = 2 \frac{22}{7} (0.35) (1+ 0.35 )

                             = \frac{44 (1.35) (0.35)}{ 7} = 20.79/7

                             =  2.97cm^{2}

 

             

                           

                                               

             

Answered by amitnrw
1

Volume  of cylinder  (V) =   385000 cm³  or 0.385 m³

Curved surface Area (CSA) of cylinder =  22000 cm² or  2.2  m²

Total surface Area (TSA) of cylinder  = 29700 cm² or 2.97  m²

Given:

  • A right circular cylinder has a height of 1 m and a radius of 35 cm.

To Find:

  • Volume  of cylinder
  • Curved surface Area of cylinder
  • Total surface Area of cylinder

Solution:

  • Volume  of cylinder  (V)  = πr²h
  • Curved surface Area (CSA) of cylinder = 2πrh
  • Total surface Area (TSA) of cylinder  =  2πr(r + h)
  • Where r is radius and h is height
  • 1 m = 100 cm
  • 1 m² = 10000 cm²
  • 1 m³ = 1000000 cm³
  • Use π = 22/7

Step 1:

Calculate Volume of Cylinder by substituting r = 100 cm  and h= 35 cm

V = πr²h

V = (22/7) (35)² x 100

V = 2200 x 175

V = 385000 cm³

V = 0.385 m³

Step 2:

Calculate CSA by substituting r = 100 cm  and h= 35 cm

CSA = 2πrh

CSA =    2 (22/7) (35)  x 100

CSA =    22000 cm²

CSA =    2.2  m²

Step 3:

Calculate TSA by substituting r = 100 cm  and h= 35 cm

TSA = 2πr(h + r)

TSA =    2 (22/7) (35)(35 + 100)

TSA =    220(135) cm²

TSA =    29700 cm²

TSA =    2.97  m²

Volume  of cylinder  (V) =   385000 cm³  or 0.385 m³

Curved surface Area (CSA) of cylinder =  22000 cm² or  2.2  m²

Total surface Area (TSA) of cylinder  = 29700 cm² or 2.97  m²

Similar questions