Math, asked by Bhawanapanghal2007, 7 months ago

5) An isosceles triangle has perimeter 20 cm and each of the equal sides is 6 cm, then its area ​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
21

\huge\sf\pink{Answer}

☞ Area of the triangle is 8√5 cm²

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ ABC is an Isosceles triangle

✭ Perimeter of the triangle is 20 cm

✭ Equal sides are 6 cm each

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Area of the triangle?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

We know that,

\underline{\boxed{\textsf{Perimeter = Sum of all sides}}}

Substituting the given values,

\sf Perimeter = 2(Equal \ Sides) + Base

\sf 20 = 6+6+ Base

\sf 20 = 12+Base

\sf 20-12 = Base

\sf \red{Base = 8 \ cm}

Area of the triangle can be found with the help of Heron's Formula,i.e,

\sf \underline{\boxed{\sf Area \ of \ Traingle = \sqrt{s(s-a)(s-b)(s-c)}}}

◕ s = Half Perimeter = \sf \dfrac{20}{2} = 10

◕ a = 6

◕ b = 6

◕ c = 8

Substituting the values,

\sf Area \ of \ Traingle = \sqrt{s(s-a)(s-b)(s-c)}

\sf \sqrt{10(10-6)(10-6)(10-8)}

\sf \sqrt{10(4)(4)(2)}

\sf \sqrt{10(32)}

\sf \sqrt{320}

\sf \sqrt{2\times 2\times 2\times 2\times 2\times 2\times 5}

\sf 2\times 2\times 2\sqrt{5}

\sf \orange{Area = 8\sqrt{5} \ cm^2}

━━━━━━━━━━━━━━━━━━

Similar questions