5 benefits of cooling down after exercise
Answers
We clearly know that, for finding a quadratic polynomial with sum of zeroes = S, and product of zeroes = P, we use equation ::
\Large\boxed{\bf{p(x) = x^2 - Sx + P}}
p(x)=x
2
−Sx+P
\:
\underline{\sf{\bigstar\:Putting\:all\:known\:values\:::}}
★Puttingallknownvalues::
\begin{gathered}\\ \quad \longrightarrow \quad \sf p(x) = x^2 - \bigg(\dfrac{9}{2}\bigg)x + 2 \end{gathered}
⟶p(x)=x
2
−(
2
9
)x+2
\:
\underline{\sf{\bigstar\:Multiplying\:the\:equation\:with\:2\:::}}
★Multiplyingtheequationwith2::
\begin{gathered}\\ \quad \longrightarrow \quad \sf p(x) = 2\Bigg(x^2 - \bigg(\dfrac{9}{2}\bigg)x + 2\Bigg) \end{gathered}
⟶p(x)=2(x
2
−(
2
9
)x+2)
\begin{gathered}\\ \quad \longrightarrow \quad \sf p(x) = \big(2\:\times\:x^2\big) - \bigg(\dfrac{9}{\cancel{2}}\:\times\:\cancel{2}\bigg)x + \big(2\:\times\:2\big)\end{gathered}
⟶p(x)=(2×x
2
)−(
2
9
×
2
)x+(2×2)
\begin{gathered}\\ \quad \longrightarrow \quad \large \bf 2x^2 - 9x + 4\end{gathered}
⟶2x
2
−9x+4
\:
\therefore\:{\underline{\sf{Hence,\:required\:polynomial\:is\:\bf{2x^2 - 9x + 4}}}}∴
Hence,requiredpolynomialis2x
2
−9x+4
\:
\LARGE\underline{\underline{\textsf{\textbf{Explore\:More\::-}}}}
ExploreMore:-
\:
If α and β are zeroes of the quadratic polynomial ax² + bx + c, then α + β = -b/a and αβ = c/a.
If α, β, γ are the zeroes of cubic polynomial ax³ + bx² + cx + d, then α + β + γ = -b/a, αβ + βγ + γα = c/a and αβγ = -d/a.
\:
\LARGE\underline{\underline{\textsf{\textbf{Learn\:more\:on\:brainly\::-}}}}
Learnmoreonbrainly:-
\:
\underline{\sf{\bigstar\:Question\:::}}
★Question::
\:
Find zeroes of the quadratic polynomial 4x² - x - 5 and verify relationship between it's zeroes and coefficients.
\:
\underline{\sf{\bigstar\:Answer\:::}}
★Answer::
\:
https://brainly.in/question/429646