Math, asked by jabakutty710, 8 months ago

5. Can you find the approximate value for
 \sqrt{17}  +  \sqrt{51 +  \sqrt{152 +  \sqrt{289} } }

Answers

Answered by Thesolver
0
I hope it will help you
Attachments:
Answered by pulakmath007
3

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO CALCULATE

 \sf{  \sqrt{17}  +  \sqrt{51 +  \sqrt{152 +  \sqrt{289} } } \: }

CALCULATION

 \sf{  \sqrt{17}  +  \sqrt{51 +  \sqrt{152 +  \sqrt{289} } } \: }

 =  \sf{  \sqrt{17}  +  \sqrt{51 +  \sqrt{(152 +17)} } \: }

 =  \sf{  \sqrt{17}  +  \sqrt{51 +  \sqrt{169} } \: }

 =  \sf{  \sqrt{17}  +  \sqrt{(51 + 13) } \: }

 =  \sf{  \sqrt{17}  +  \sqrt{64 } \: }

 =  \sf{  \sqrt{17}  +  8  \: }

ADDITIONAL INFORMATION

The given may be like as below :

EVALUATE :

 \sf{  \sqrt{17  +  \sqrt{51 +  \sqrt{152 +  \sqrt{289} } }} \: }

EVALUATION

 \sf{  \sqrt{17  +  \sqrt{51 +  \sqrt{152 +  \sqrt{289} } }} \: }

 =  \sf{  \sqrt{17  +  \sqrt{51 +  \sqrt{(152 +  17) } }} \: }

 =  \sf{  \sqrt{17  +  \sqrt{51 +  \sqrt{169 } }} \: }

 =  \sf{  \sqrt{17  +  \sqrt{(51 + 13) }} \: }

 =  \sf{  \sqrt{17  +  \sqrt{64 }} \: }

 =  \sf{  \sqrt{17  + 8} \: }

 =  \sf{  \sqrt{17  + 8} \: }

 =  \sf{  \sqrt{25} \: }

 =  \sf{5 \: }

━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━LEARN MORE FROM BRAINLY

Out of the following which are proper fractional numbers?

(i)3/2

(ii)2/5

(iii)1/7

(iv)8/3

https://brainly.in/question/4865271

Similar questions