5. Compute Median from the following data:
Mid-values:
37.5
42.5
47.5
52.5
57.5
Frequency:
30
20
15
13
22
Answers
Answer:
153.80
Explanation:
Here we are given the mid-values. So, should first find the upper and lower limits of the various classes. The difference between two consecutive values is h=125−115=10.
∴ Lower limit of a class = Mid-value- h/2, Upper limit = Mid-value + h/2.
Calculation of Median
Mid-value Class groups Frequency Cumulative Frequency
115 110-120 6 6
125 120-130 25 31
135 130-140 48 79
145 140-150 72 151
155 150-160 116 267
165 160-170 60 327
175 170-180 38 365
185 180-190 22 387
195 190-200 3 390
N=∑f i =390
We have,
N=390
∴2N = 2/390
=195
The cumulative frequency just greater than N/2 i.e.195 is 267 and the corresponding class is 150−160. So, 150−160 is the median class.
∴l=150,f=116,h=10,F=151
Now,
Median =l+ f 2 N −F ×h
⇒Median=150+ 116 /195−151 ×10
=153.80