5 cos2 60 + 4 sec2 30 - tan2 45 / sin2 30 + cos 30
Answers
I hope it may be help you
please mark as brainliest
(5 cos2 60 + 4 sec2 30 - tan2 45 ) / (sin2 30 + cos 30) = 67/(3+6√3)
Explanation:
TRIGONOMETRIC RATIOS :
0° 30° 45° 60° 90°
Sin 0 1/2 1/√2 √3/2 1
cos 1 √3/2 1/√2 1/2 0
tan 0 1/√3 1 √3 undefined
cot not √3 1 1/√3 0
defined
Sec 1 2/√3 √2 2 not defined
cosec not 2 √2 2/√3 1
defined
Given:
(5 cos2 60 + 4 sec2 30 - tan2 45 ) / (sin2 30 + cos 30)
From that, Tabulation find the ratios value
cos 60° = 1/2
sec 30° = 2/√3
tan 45° = 1
sin 30° = 1/2
cos 30° = √3/2
==>(5 cos2 60 + 4 sec2 30 - tan2 45 )
cos²60° = (1/2)²
cos²60° = 1/4
sec²30° =( 2/√3 )²
sec²30° = 4/3
tan²45° = (1)²
tan²45° = 1
==>(sin2 30 + cos 30)
sin²30° = ( 1/2)²
sin²30° = 1/4
cos 30° = √3/2
Substitute all the values in the given question,
==> (5 cos2 60 + 4 sec2 30 - tan2 45 ) / (sin2 30 + cos 30)
==> (5(1/4) + 4 (4/3) - 1) / (1/4 +√3/2 )
==> (5/4 + 16/3 -1) / (1/4 +√3/2 )
The denominator is different
so, Taking LCM
==> (5(3)/4(3) + 16(4)/3(4) - 1(12)/12) / (1/4 + √3(2)/2(2) )
==> (15/12 + 64/12 - 12/12) / (1/4 +2√3/4)
==> (3/12 +64/12) / ((1+2√3)/4)
==> (67/12 ) / (1+2√3)/4
==> (67/12 ) × 4/(1+2√3)
==> (67/3) × 1/(1+2√3)
==> 67/3(1+2√3)
==> 67/(3+6√3)
==> (5 cos2 60 + 4 sec2 30 - tan2 45 ) / (sin2 30 + cos 30) = 67/(3+6√3)