Math, asked by Anonymous, 11 months ago

5 cos² 60 + 4 sec² 30 - tan² 45 / sin² 30 + cos² 30​

Answers

Answered by Anonymous
67

SOLUTION

The answer is 67/12

Given

 \sf \:  \dfrac{5 {cos}^{2}60 + 4 {sec}^{2}30 -  {tan45}^{2}   }{ {sin}^{2} 30 +  {cos}^{2}30 }

NoTE

  • sin²∅ + cos²∅ = 1

  • tan45 = 1

  • cos60 = 1/2

  • sec60 = 2/√3

Now,

(Putting the values)

 \longrightarrow \:  \sf \:  \dfrac{5 \times ( \frac{1}{2}) {}^{2} + 4 \times  (\frac{2}{ \sqrt{3} }) {}^{2}     -  {1}^{2} }{1}  \\  \\  \longrightarrow \:  \sf \: 5 \times  \dfrac{1}{4}  + 4 \times  \dfrac{4}{3}  - 1 \\  \\  \longrightarrow \sf  \:  \dfrac{5}{4}  +  \dfrac{16}{3}  - 1 \\  \\  \longrightarrow \:  \sf \:  \dfrac{15 + 64 - 12}{12}   \\  \\  \longrightarrow \:  \sf \:  \dfrac{79 - 12}{12} \\  \\  \longrightarrow \sf \:   \dfrac{67}{12}

Thus,

 \star \:  \:  \: \boxed{ \boxed{ \sf \:  \dfrac{5 {cos}^{2}60 + 4 {sec}^{2}30 -  {tan45}^{2}   }{ {sin}^{2} 30 +  {cos}^{2}30 }  =  \dfrac{67}{13} }}

Answered by Anonymous
39

Here's your answer :-

Question : 5 cos² 60° + 4 sec² 30° - tan² 45° / sin² 30° + cos² 30°

Solution : It is in the attachment.

Hope it helps!

~ A.R.M.Y ~

Attachments:
Similar questions