Math, asked by Thaarukeshini, 11 months ago

5 cot theta =4, then find the value of (2 sin theta-5 cos theta)+sin theta is

Answers

Answered by jindalrajesh22
2

Answer:-5/root41

Step-by-step explanation:

Look at the image

Attachments:
Answered by lublana
1

(2\sin\theta-5\cos\theta)+\sin\theta=-\frac{5}{\sqrt{41}}

Step-by-step explanation:

Given:

5 \cot\theta=4

\cot\theta=\frac{4}{5}

Formula:1+\cot^2\theta=\cosec^2\theta

Using the formula

1+(\frac{4}{5})^2=\cosec^2\theta

1+\frac{16}{25}=\cosec^2\theta

\frac{25+16}{25}=\cosec^2\theta

\cosec\theta=\sqrt{\frac{41}{25}}=\frac{\sqrt{41}}{5}

\sin\theta=\frac{1}{cosec\theta}=\frac{5}{\sqrt{41}}

\cos\theta=\sqrt{1-\sin^2\theta}

\cos\theta=\sqrt{1-(\frac{5}{\sqrt{41}})^2}=\sqrt{1-\frac{25}{41}}=\sqrt{\frac{41-25}{41}}=\sqrt{16}{41}}=\frac{4}{\sqrt{41}}

(2\sin\theta-5\cos\theta)+\sin\theta

Substitute the values

(2\times \frac{5}{\sqrt{41}}-5\times \frac{4}{\sqrt{41}})+\frac{5}{\sqrt{41}}

(\frac{10}{\sqrt{41}}-\frac{20}{\sqrt{41}})+\frac{5}{\sqrt{41}}

\frac{10-20}{\sqrt{41}}+\frac{5}{\sqrt{41}}\\\frac{-10}{\sqrt{41}}+\frac{5}{\sqrt{41}}

\frac{-10+5}{\sqrt{41}}

-\frac{5}{\sqrt{41}}

#Learn more:

https://brainly.in/question/3669500:Answered by AryanTannyson

Similar questions