Math, asked by mrfhassan2, 7 months ago

5.Does line 3x + 4y = 7 pass through Origin?
O yes
O no
O not sure
1S
O non of all​

Answers

Answered by KapishSatpute88789
0

Among all the options the answer is NOT SURE.........

Answered by ʙᴇᴀᴜᴛʏᴀɴɢᴇʟ
6

Step-by-step explanation:

Given

→ Two parallel straight line are given :-

\begin{lgathered}\sf{\implies \: 3x + 4y = 12 \: and \: 6x + 8y + 3 = 0}\\\end{lgathered}

⟹3x+4y=12and6x+8y+3=0

→ A line passing through origin intersects these two lines at P and Q point.

\begin{lgathered}\large{\underline{\underline{\sf{To \: Find}}}}\\\end{lgathered}

ToFind

→ The ratio of OP and OQ .

\begin{lgathered}\large{\underline{\underline{\sf{Solution}}}}\\\end{lgathered}

Solution

Diagram refers to the attachment .

Let's assume that the ratio is k : 1.

So first of all we will solve the first equation by using the equation of line passing through the origin .

\begin{lgathered}\sf{\implies \: 3x+4y=12\: and\: y= mx}\\\end{lgathered}

⟹3x+4y=12andy=mx

Putting the value of y in first equation .

\begin{lgathered}\sf{\implies 3x + 4(mx) = 12 }\\\end{lgathered}

⟹3x+4(mx)=12

\begin{lgathered}\sf{\implies 3x + 4mx = 12 }\\\end{lgathered}

⟹3x+4mx=12

\begin{lgathered}\sf{\implies x( 3 + 4m) = 12 }\\\end{lgathered}

⟹x(3+4m)=12

\begin{lgathered}{\underline{\underline{\sf{\implies x = \frac{12}{3+4m} }}}}\\\end{lgathered}

⟹x=

3+4m

12

Now putting the value of x in equation first so that we can get the value of y also.

\begin{lgathered}\sf{\implies 3( \frac{12}{3 + 4m} ) + 4y = 12 }\\\end{lgathered}

⟹3(

3+4m

12

)+4y=12

Taking 4 common from both sides

\begin{lgathered}\sf{\implies 4 [ ( \frac{9}{3 + 4m} + y ] = 4[ 3 ] }\\\end{lgathered}

⟹4[(

3+4m

9

+y]=4[3]

\begin{lgathered}\sf{\implies \frac{9 + 3y + 4ym }{ 3+4m} = 3 }\\\end{lgathered}

3+4m

9+3y+4ym

=3

\begin{lgathered}\sf{\implies 9 + 3y + 4ym = 9 + 12m }\\\end{lgathered}

⟹9+3y+4ym=9+12m

\begin{lgathered}\sf{\implies y(3 + 4m) = 9-9+12m }\\\end{lgathered}

⟹y(3+4m)=9−9+12m

\begin{lgathered}{\underline{\underline{\sf{\implies y = \frac{12m}{3+4m} }}}}\\\end{lgathered}

⟹y=

3+4m

12m

\begin{lgathered}{\boxed{\sf{Coordinates\: of \: P( \frac{12}{3+4m} , \frac{12m}{3+4m}}}}\\\end{lgathered}

CoordinatesofP(

3+4m

12

,

3+4m

12m

Now we will solve equation second by the equation of line passing through origin .

\begin{lgathered}\sf{\implies 6x + 8y = -3 \: and \: y = mx }\\\end{lgathered}

⟹6x+8y=−3andy=mx

Putting the value of y in equation second.

\begin{lgathered}\sf{\implies 6x + 8(mx) = -3 }\\\end{lgathered}

⟹6x+8(mx)=−3

\begin{lgathered}\sf{\implies 6x + 8mx = -3 }\\\end{lgathered}

⟹6x+8mx=−3

\begin{lgathered}\sf{\implies x(6+8m) = -3 }\\\end{lgathered}

⟹x(6+8m)=−3

\begin{lgathered}{\underline{\underline{\sf{\implies x = \frac{-3}{6 + 8m} }}}}\\\end{lgathered}

⟹x=

6+8m

−3

Now putting the value of x in equation second so that we can get the value of y also.

\begin{lgathered}\sf{\implies 6[ \frac{-3}{6 + 8m} ] + 8y = -3 }\\\end{lgathered}

⟹6[

6+8m

−3

]+8y=−3

\begin{lgathered}\sf{\implies [ \frac{-18}{6+8m} ] + 8y = -3 }\\\end{lgathered}

⟹[

6+8m

−18

]+8y=−3

\begin{lgathered}\sf{\implies \frac{- 18 + 48y + 64my}{6+8m} = -3 }\\\end{lgathered}

6+8m

−18+48y+64my

=−3

\begin{lgathered}\sf{\implies -18 + 48y + 64my = -18 - 24m }\\\end{lgathered}

⟹−18+48y+64my=−18−24m

\begin{lgathered}\sf{\implies y( 48 + 64m) = -24m }\\\end{lgathered}

⟹y(48+64m)=−24m

\begin{lgathered}{\underline{\underline{\sf{\implies y = \frac{-24}{ 48 + 64 m } }}} }\\\end{lgathered}

⟹y=

48+64m

−24

Taking 8 common from RHS fraction .

\begin{lgathered}{\underline{\underline{\sf{\implies y = \frac{-3m}{6 + 8m} }}}}\\\end{lgathered}

⟹y=

6+8m

−3m

\begin{lgathered}\sf{Coordinates\: of \: Q ( \frac{-3}{6+8m} , \frac{-3m}{6+8m} }\\\end{lgathered}

CoordinatesofQ(

6+8m

−3

,

6+8m

−3m

Now we know co-ordinate of origin are O( 0,0)

Using intersection formula.

\begin{lgathered}\sf{\implies Ox = \frac{m_1 ( x_2) + m_2(x_1)}{k+1} }\\\end{lgathered}

⟹Ox=

k+1

m

1

(x

2

)+m

2

(x

1

)

\begin{lgathered}\sf{\implies Ox = \frac{k ( \frac{-3}{6+8m} + 1( \frac{12}{3+4m}}{k+1} }\\\end{lgathered}

⟹Ox=

k+1

k(

6+8m

−3

+1(

3+4m

12

→ 0 = [-3k/6+8m + 12/3+4m]/[k+1]

→ 0 = [-3k/2 + 12]

→ -12 = -3k/2

→ -24 = -3k

→ 24/3 = k

→ 8/ 1 = k/1

So Ratio is 8 : 1

Similar questions