Math, asked by mahadiksahil32, 6 days ago

5) Elimina tetheta from x=2+3 cos theta y=5+3sin theta​

Answers

Answered by ajha71677
0

Answer:

Elimina tetheta from x=2+3 cos theta y=5+3sin theta

Answered by mathdude500
3

Question :-

\rm \: Eliminate \: \theta  \: from \\  \\ \rm \: x = 2 + 3cos\theta  \:  \\  \\\rm \:  y \:  = 5 + 3sin\theta  \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = 2 + 3cos\theta  \\

\rm \: x  -  2  =  3cos\theta  \\

\rm\implies \:cos\theta  = \dfrac{x - 2}{3}  -  -  - (1) \\

Also, given that

\rm \: y = 5 + 3sin\theta  \\

\rm \: y  -  5  =  3sin\theta  \\

\rm\implies \:sin\theta  = \dfrac{y - 5}{3}   -  -  - (2)\\

We know,

\rm \:  {sin}^{2}\theta  +  {cos}^{2}\theta  = 1 \\

On substituting the values from equation (1) and (2), we get

\rm \:  {\bigg(\dfrac{x - 2}{3} \bigg) }^{2} + {\bigg(\dfrac{y - 5}{3} \bigg) }^{2} = 1 \\

\rm \: \dfrac{ {(x - 2)}^{2} }{9}  + \dfrac{ {(y - 5)}^{2} }{9}  = 1

\rm \:  {(x - 2)}^{2} +  {(y - 5)}^{2} = 9 \\

\rm \:  {x}^{2} + 4 - 4x +  {y}^{2} + 25 - 10y = 9 \\

\rm \:  {x}^{2} +  {y}^{2} - 4x - 10y + 20 = 0 \\

\rule{190pt}{2pt}

Additional Information :-

\rm \:  {sec}^{2}\theta  -  {tan}^{2}\theta  = 1 \\

\rm \:  {cosec}^{2}\theta  -  {cot}^{2}\theta  = 1 \\

\rule{190pt}{2pt}

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions