Math, asked by yadurajsingh, 3 months ago

5. Express the following as the sum of consecutive
odd numbers.
b. 122 c. 132
d. 152 e.
6. Find the square of the following numbers.
b. 126
d. 67
a. 102
e. 182
a. 35
c. 128
e. 48​

Answers

Answered by rpnikhilverma
1

Answer:

ok

6) answer (i)

\left(32\right)^2=\left(30+2\right)^2=\left(30\right)^2+2\times30\times2+\left(2\right)^2(32)  

2

=(30+2)  

2

=(30)  

2

+2×30×2+(2)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

]

= 900 + 120 + 4 = 1024

(ii) \left(35\right)^2=\left(30+5\right)^2=\left(30\right)^2+2\times30\times5+\left(5\right)^2(35)  

2

=(30+5)  

2

=(30)  

2

+2×30×5+(5)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

 

= 900 + 300 + 25 = 1225

(iii) \left(86\right)^2=\left(80+6\right)^2=\left(80\right)^2+2\times80\times6+\left(6\right)^2(86)  

2

=(80+6)  

2

=(80)  

2

+2×80×6+(6)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

 

= 8100 + 540 + 9 = 8649

(iv) \left(93\right)^2=\left(90+3\right)^2=\left(90\right)^2+2\times90\times3+\left(3\right)^2(93)  

2

=(90+3)  

2

=(90)  

2

+2×90×3+(3)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

]

= 8100 + 540 + 9 = 8649

(v) \left(71\right)^2=\left(70+1\right)^2=\left(70\right)^2+2\times70\times1+\left(1\right)^2(71)  

2

=(70+1)  

2

=(70)  

2

+2×70×1+(1)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

 

= 4900 + 140 + 1 = 5041

(vi) \left(46\right)^2=\left(40+6\right)^2=\left(40\right)^2+2\times40\times6+\left(6\right)^2(46)  

2

=(40+6)  

2

=(40)  

2

+2×40×6+(6)  

2

 

[\because\left(a+b\right)^2=a^2+2ab+b^2∵(a+b)  

2

=a  

2

+2ab+b  

2

]

= 1600 + 480 + 36 = 2116

Attachments:
Similar questions