5. Factorise:
( 4x^2+9y^2+16z^2+12xy-24yz-16xz
Answers
Answered by
1
Answer:
4x²+9y²+16z²+12xy-24yz-16xz
= (2x)²+(3y)²+(4z)²+12xy-24yz-16xz
= (2x)²+(3y)²+(-4z)²+12xy-24yz-16xz
= (2x)2+(3y)²+(-42)²+ 2(2x)(3y)+2(3y)(-4z)+2(2x)(-4z)
Using (a + b + c) = a + b2+ &' + 2ab + 2bc + 2ac
Putting a = 2x, b=3y,c=-4z
= (2x + 3y - 4z)²
Answered by
7
Answer:
★question :-
† factorise
4x^2+9y^2+16z^2+12xy-24yz-16xz
----------------------------------------------------------------------------
● Identity
An identity is an equality which is true find all
values of a variable in the equality .
In an identity the right hand side expression is called expanded form of the left hand side expression.
--------------------------------------
Now comparing that with the identity
⟹ (a^2+b^2+b^2) =2ab+2bc+2ac
----------------------------------------------------------------------------
† Solution :-
We can we write the given expression -
Now we get :
4x^2+9y^2+16z^2+12xy-24yz-16xz
: ⟹2x^2+3y^2+4z^2+2×2x×3y+2×3y+
(-4z)+2×2x×(-4z)
: ⟹ [ 2x+3y+(-4z)]^2
: ⟹[ 2x+3y-4z] [ 2x+3y-4z]
--------------------------------------
Required Answer :
⟹ ( 2x+3y-4z) ( 2x+3y-4z)
★ Identity used :
[(a^2+b^2+c^2) =2ab+2bc+2ac]
----------------------------------------------------------------------------
I hope this is helpful.....
Similar questions