Math, asked by Tinku952, 10 months ago

5. Factorise

\huge\fbox{\color{Green,Red}{Question}}

2x² + y² +8z² - 2√2 xy + 4√2 yz - 8xz​

Answers

Answered by Anonymous
9

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

{\star{\sf{\green{ \: 2 {x}^{2}  +  {y}^{2}  + 8 {z}^{2}  - 2 \sqrt{2}xy + 4 \sqrt{2}  yz - 8xz}}}}\\ \\

  • From perfect square we can't find that which term has(+) sign or (-) sign.
  • From next term we can find that the terms which has negative sign and in these terms which number is repeating.
  • Therefore we will put negative sign to this term.

{\bf{\blue{\underline{Now:}}}}

{\implies{\sf{2 {x +    {y}^{2}  + 8z - 2 \sqrt{2} xy + 4 \sqrt{2} yz-8xz}}}} \\  \\

{\implies{\sf{( -  \sqrt{2}) + ( {y)}^{2} + (2 \sqrt{2})^{2}  -( 2 \times  \sqrt{2x}  \times y  )+( 2 \times y \times 2 \sqrt{2z}  ) - (2 \times 2 \sqrt{2}  z \times  \sqrt{2x} )}}}\\ \\

{\implies{\sf{ \big( -  \sqrt{2x } + y + 2 \sqrt{2}z  \big) ^{2}  }}}\\ \\

{\implies{\sf{ \big( -  \sqrt{2x } + y + 2 \sqrt{2}z  \big)    \big( - \sqrt{2} x + y + 2 \sqrt{2} z \big) }}}\\ \\

Similar questions