5. fH
: (i) sin A (1 + tan A) + cos A (1 + cot A) = sec A+ cosec A
sin 0-cose +1
sin 0+ cos 0-1 sec 0 - tano
Answers
Answered by
44
Question: Prove that sinA (1 + tanA) + cosA (1 + cotA) = secA + cosecA.
Solution: sinA (1 + tanA) + cosA (1 + cotA) = secA + cosecA
- 1/tanA = cotA
L.H.S → sinA (1 + tanA) + cosA (1 + 1/tanA)
→ sinA (1 + tanA) + cosA (tanA + 1)/tanA
→ sinA (1 + tanA) + cosA/tanA (1 + tanA)
→ (1 + tanA)(sinA + cosA/tanA)
- tanA = sinA/cosA
→ (1 + tanA)(sinA + cosA × cosA/sinA)
→ (1 + tanA)(sinA + cos²A/sinA)
→ (1 + tanA)(sin²A + cos²A)/sinA
→ (1 + tanA)/sinA
→ 1/sinA + tanA/sinA
→ 1/sinA + sinA/cosA × 1/sinA
→ 1/sinA + 1/cosA
- 1/cosA = secA
- 1/sinA = cosecA
→ cosecA + secA
Q.E.D
BrainlyConqueror0901:
nice explained : )
Answered by
88
⠀
Similar questions
English,
5 months ago
English,
5 months ago
Business Studies,
5 months ago
English,
11 months ago
Business Studies,
11 months ago
Computer Science,
1 year ago